动态规划算法
1、最长公共子序列
定义网格: 以s[i]和s[j]作为结尾的子字符串的最长子序列长度
定义公式:
s[i][j] = s[i - 1][j - 1] + 1 s[i] == s[j] 需要加入公共子序列,长度+1
s[i][j] = ma(s[i - 1][j], s[i][j - 1]), s[i] != s[j],长度保持之前的
private static int longestCommonSubSequence(String s1, String s2){
int[][] dp = new int[s1.length() + 1][s2.length() + 1];
for (int i = 0; i < s1.length(); i ++){
for (int j = 0; j < s2.length(); j ++){
if (s1.charAt(i) == s2.charAt(j)){
dp[i + 1][j + 1] = dp[i][j] + 1;
}else {
dp[i + 1][j + 1] = Math.max(dp[i][j + 1], dp[i + 1][j]);
}
}
}
return dp[s1.length()][s2.length()];
}
2、最长公共子串
定义网格:以s[i]和s[j]作为公共子串结尾的子串长度
定义公式:
s[i][j] = s[i - 1][j - 1] + 1; 如果s[i] == s[j]
s[i][j] = 0; 如果s[i] != s[j]
private static int longestCommonSubstring(String s1 , String s2){
int[][] dp = new int[s1.length() + 1][s2.length() + 1];
int maxLength = 0;
for (int i = 0; i < s1.length(); i ++){
for(int j = 0; j < s2.length(); j ++){
if(s1.charAt(i) == s2.charAt(j)){
dp[i + 1][j + 1] = dp[i][j] + 1;
if (dp[i + 1][j + 1] > maxLength){
maxLength = dp[i + 1][j + 1];
}
}else {
dp[i + 1][j + 1] = 0;
}
}
}
return maxLength;
}
4、最短编辑问题
给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
定义网格
网格标示s[i] 编辑为s[j] 的最短距离
设计公式
s[i][j] = s[i -1][j - 1] 当s[i] = s[j]时
s[i][j] = min(s[i -1][j - 1], s[i - 1][j], s[i][j - 1]) 当s[i] != s[j]时
public static int minDistance(String word1, String word2) {
int[][] distance = new int[word1.length() + 1][word2.length() + 1];
//初始化边界
for(int i = 0; i < word1.length(); i ++){
distance[i + 1][0] = i + 1;
}
//初始化边界
for(int j = 0; j < word2.length(); j ++){
distance[0][j + 1] = j + 1;
}
for(int i = 0; i < word1.length(); i ++){
for(int j = 0; j < word2.length(); j ++){
if(word1.charAt(i) == word2.charAt(j)){
distance[i + 1][j + 1] = distance[i][j];
}else{
distance[i + 1][j + 1] = Math.min(Math.min(distance[i][j], distance[i + 1][j]), distance[i][j + 1]) + 1;
}
}
}
return distance[word1.length()][word2.length()];
}
还没有评论,来说两句吧...