发表评论取消回复
相关阅读
相关 大模型微调技术LoRA与QLoRA
大模型的参数量都在100B级别,由于算力的吃紧,在这个基础上进行所有参数的微调变得不可能。LoRA正是在这个背景下提出的解决方案。 1|2原理 虽然模型的参数众多,但其
相关 LLM-微调:Peft库--get_peft_model()-->在llm基座模型的基础上注入Lora模块(加载流程)【注入的Lora模块的初始参数是随机初始化的】
一、site-packages-->peft-->mapping.py-->get\_peft\_model() def get_peft_model(model
相关 AIGC|FineTune工程之LoRa高效参数微调
徐辉 | 后端开发工程师 一、引言 随着深度学习和自然语言处理技术的快速发展,大型预训练语言模型(如GPT、Vicuna、Alpaca、Llama、ChatGLM等)在
相关 Peft库实战(三):Lora微调mt0/bloom(GPT生成式)
![a9e98d2626714f61a5ae65ee9124f5d9.png][] Model Summary > We present BLOOMZ & mT0, a
相关 Peft库实战(二):Lora微调mt5-xxl【Seq2Seq:翻译、自动摘要、信息抽取】
一、Lora微调mt5-xxl GPU要求:至少 A100-SXM4-80GB \ 2 batch\_size:A100-SXM4-80GB \ 2情况下最大 16
相关 Peft库实战(一):Lora微调bert(文本情感分类)
peft\_bert\_demo.py import argparse import os import torch from to
相关 Peft库使用技巧(一):合并基座模型与Lora模型【使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型】
使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型 Copyright 2
相关 LLM-项目详解-Chinese-LLaMA-AIpaca(一):LLM+LoRa微调加速技术原理及基于PEFT的动手实践:一些思考和mt0-large+lora完整案例
如何花费较少的算力成本来进行微调训练,十分重要,当前关于LLaMA、Alpaca、Instruct微调、LoRa微调等多个概念大家讲的很多,最近也在学习,也看到几个有趣的话题(
相关 Full-Parameter全参数微调与LoRA低秩微调
近年来,大型语言模型的指令微调是自然语言处理领域的一个重要研究领域。 由于资源和成本的限制,一些研究人员采用了参数有效的调整技术,如LoRA,并取得了不错的结果。与全参数微
相关 大模型-微调技术:PEFT库
pypi:[https://pypi.org/project/peft/][https_pypi.org_project_peft] 目前peft 0.3.0 code地址:
还没有评论,来说两句吧...