发表评论取消回复
相关阅读
相关 大模型微调技术LoRA与QLoRA
大模型的参数量都在100B级别,由于算力的吃紧,在这个基础上进行所有参数的微调变得不可能。LoRA正是在这个背景下提出的解决方案。 1|2原理 虽然模型的参数众多,但其
相关 【万字长文】LLaMA, ChatGLM, BLOOM的参数高效微调实践
1. 开源基座模型对比 大语言模型的训练分为两个阶段:(1)在海量文本语料上的无监督预训练,学习通用的语义表示和世界知识。(2)在小规模数据上,进行指令微调和基于人类反馈
相关 大模型参数高效微调技术原理综述 之 LoRA、AdaLoRA、QLoRA
随着,ChatGPT 迅速爆火,引发了大模型的时代变革。然而对于普通大众来说,进行大模型的[预训练][Link 1]或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科
相关 AIGC|FineTune工程之LoRa高效参数微调
徐辉 | 后端开发工程师 一、引言 随着深度学习和自然语言处理技术的快速发展,大型预训练语言模型(如GPT、Vicuna、Alpaca、Llama、ChatGLM等)在
相关 Peft库实战(一):Lora微调bert(文本情感分类)
peft\_bert\_demo.py import argparse import os import torch from to
相关 Peft库使用技巧(一):合并基座模型与Lora模型【使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型】
使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型 Copyright 2
相关 LLM-LLaMA中文衍生模型:Chinese-LLaMA-Alpaca【扩充词表、Lora部分参数预训练、微调】
GitHub:[GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU训练部署 (Chinese
相关 Full-Parameter全参数微调与LoRA低秩微调
近年来,大型语言模型的指令微调是自然语言处理领域的一个重要研究领域。 由于资源和成本的限制,一些研究人员采用了参数有效的调整技术,如LoRA,并取得了不错的结果。与全参数微
相关 LLM-微调-方案(一):Lora【案例:chatGLM-Lora】【在chatGLM原有结构中间插入新的网络层】【微调时冻结原有结构参数,只微调新加入的网络层参数】
Lora主要在模型中注入可训练模块,大模型在预训练完收敛之后模型包含许多进行矩阵乘法的稠密层,这些层通常是满秩的,在微调过程中其实改变量是比较小的,在矩阵乘法中表现为低秩的改变
相关 Lora参数收集
Lora参数收集 lora技术能传输多大带宽 使用SX1278射频芯片,主推中国市场,所在频段为410MHz - 441MHz,1000KHz 步进,建议433±5
还没有评论,来说两句吧...