发表评论取消回复
相关阅读
相关 LLM-微调:LoRA 模型合并与保存【将利用lora训练后的lora模型与基座模型合并,将新合并的模型用作独立模型】【可以将基座模型合并多个lora模型】
一.引言 I. Introduction LLM 使用过程中最常用方法之一就是通过 [LoRA][] 基于自己的数据对大模型进行微调,本文简单介绍 LoRA 原理以及如何
相关 【自然语言处理】大模型高效微调:PEFT 使用案例
文章目录 一、PEFT介绍 二、PEFT 使用 2.1 PeftConfig 2.2 PeftModel 2.3 保存
相关 大模型参数高效微调技术原理综述 之 LoRA、AdaLoRA、QLoRA
随着,ChatGPT 迅速爆火,引发了大模型的时代变革。然而对于普通大众来说,进行大模型的[预训练][Link 1]或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科
相关 Peft库实战(二):Lora微调mt5-xxl【Seq2Seq:翻译、自动摘要、信息抽取】
一、Lora微调mt5-xxl GPU要求:至少 A100-SXM4-80GB \ 2 batch\_size:A100-SXM4-80GB \ 2情况下最大 16
相关 Peft库实战(一):Lora微调bert(文本情感分类)
peft\_bert\_demo.py import argparse import os import torch from to
相关 Peft库使用技巧(一):合并基座模型与Lora模型【使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型】
使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型 Copyright 2
相关 LLM-项目详解-Chinese-LLaMA-AIpaca(二):代码解读【①prompt指令制作、②合并分词器、③Lora模型与基础模型合并、③模型分片保存】
一、prompt指令制备【crawl\_prompt.py】 import openai import json import sys i
相关 Full-Parameter全参数微调与LoRA低秩微调
近年来,大型语言模型的指令微调是自然语言处理领域的一个重要研究领域。 由于资源和成本的限制,一些研究人员采用了参数有效的调整技术,如LoRA,并取得了不错的结果。与全参数微
相关 大模型-DeltaTuning:①增量式(原模型参数不变,插入可微调参数层)、②指定式(原模型参数冻结一部分参数,微调一部分参数)、③重参数化式(将原模型参数层改造,比如插入低秩)
【随着模型增大,各方案区别不大】 ![9c2b5ab5be484724ab9f0f473db60f2c.png][] ![b71bc8fda98448d3866afd79
相关 .BERT模型预训练与微调
原文链接:[https://blog.csdn.net/weixin\_46649052/article/details/118936381?ops\_request\_mis
还没有评论,来说两句吧...