发表评论取消回复
相关阅读
相关 LLM-微调:Peft库--get_peft_model()-->在llm基座模型的基础上注入Lora模块(加载流程)【注入的Lora模块的初始参数是随机初始化的】
一、site-packages-->peft-->mapping.py-->get\_peft\_model() def get_peft_model(model
相关 【自然语言处理】大模型高效微调:PEFT 使用案例
文章目录 一、PEFT介绍 二、PEFT 使用 2.1 PeftConfig 2.2 PeftModel 2.3 保存
相关 大模型参数高效微调技术原理综述 之 LoRA、AdaLoRA、QLoRA
随着,ChatGPT 迅速爆火,引发了大模型的时代变革。然而对于普通大众来说,进行大模型的[预训练][Link 1]或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科
相关 Peft库实战(三):Lora微调mt0/bloom(GPT生成式)
![a9e98d2626714f61a5ae65ee9124f5d9.png][] Model Summary > We present BLOOMZ & mT0, a
相关 大模型-微调技术:LLM-Adapters库【对 PEFT 库的扩展,是一个简单易用的框架,将各种适配器集成到 LLM 中】
LLM-Adapters[\[1\]][1] 是对 PEFT 库的扩展,是一个简单易用的框架,将各种适配器集成到 LLM 中,可针对不同的任务执行 LLM 的基于适配器的 PE
相关 Peft库实战(一):Lora微调bert(文本情感分类)
peft\_bert\_demo.py import argparse import os import torch from to
相关 Peft库使用技巧(二):删除、合并微调参数【从全参数微调后的模型参数中剔除基座模型参数(冻结),然后发布自己训练的这部分参数模块】
从全参数微调后的模型参数中剔除基座模型参数(冻结),然后发布自己训练的这部分参数模块 Copyright 2023 Rohan Taori, Ishaan G
相关 Peft库使用技巧(一):合并基座模型与Lora模型【使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型】
使用Peft库微调基座模型(比如LLaMA-7B)后会得到Lora参数模块,将基座模型与Lora参数合并后才能得到完整的微调后的大模型 Copyright 2
相关 大模型-微调技术:DeltaTuning【提出现有PEFT的统一框架;从优化角度解释PEFT的有效性;进行了超大规模的实验】【参数高效微调统一框架】
DeltaTuning [Parameter-efficient fine-tuning of large-scale pre-trained language mode
相关 大模型-微调技术:PEFT库
pypi:[https://pypi.org/project/peft/][https_pypi.org_project_peft] 目前peft 0.3.0 code地址:
还没有评论,来说两句吧...