OpenCV:python调用摄像头同时使用OpenCV中自带已训练好的检测器来检测实时图像中的人脸和眼睛
" class="reference-link">
日萌社
人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)
import numpy as np
import cv2
import cv2 as cv
import matplotlib.pyplot as plt
# 实例化检测器
face_cas = cv.CascadeClassifier("haarcascade_frontalface_default.xml" )
face_cas.load('haarcascade_frontalface_default.xml')
eyes_cas = cv.CascadeClassifier("haarcascade_eye.xml")
eyes_cas.load("haarcascade_eye.xml")
# 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2
cap = cv2.VideoCapture(0)
while True:
# 从摄像头读取图片
sucess, img = cap.read()
# 转为灰度图片
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 显示摄像头,背景是灰度。
# cv2.imshow("img", gray)
#彩色显示图像
# cv2.imshow("img", img)
# 以灰度图的形式读取图片
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 调用识别人脸
faceRects = face_cas.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
for faceRect in faceRects:
x, y, w, h = faceRect
# 框出人脸
cv.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 3)
# 4.在识别出的人脸中进行眼睛的检测
roi_color = img[y:y + h, x:x + w]
roi_gray = gray[y:y + h, x:x + w]
eyes = eyes_cas.detectMultiScale(roi_gray)
for (ex, ey, ew, eh) in eyes:
cv.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
## 检测结果的绘制
# plt.figure(figsize=(8, 6), dpi=100)
# plt.imshow(img[:, :, ::-1]), plt.title('检测结果')
# plt.xticks([]), plt.yticks([])
# plt.show()
#彩色显示图像
cv2.imshow("img", img)
# 保持画面的持续。
k = cv2.waitKey(1)
if k == 27:
# 通过esc键退出摄像
cv2.destroyAllWindows()
break
elif k == ord("s"):
# 通过s键保存图片,并退出。
cv2.imwrite("image2.jpg", img)
cv2.destroyAllWindows()
break
# 关闭摄像头
cap.release()
还没有评论,来说两句吧...