图像边缘检测 Canny边缘检测
底下有详细代码
一、介绍
1、图像检测的原理。
图像检测的原理是检测相邻的几个点像素值之间的变化率,相对于对函数求导。求点P(x,y)的变换率,可以在点P周围选取一些点,求x方向的距离Gx,再求y方向上的距离Gy。最后变换率G等于Gx平方加上Gy平方的和的平方差,即G=Math.sqrt(Gx^2+Gy^2)。
2、Canny算子。
Canny算子对噪声不敏感。Canny边缘检测算子是John F. Canny于1986年开发出来的一个多级边缘检测算法。更为重要的是Canny创立了“边缘检测计算理论”(computational theory of edge detection)解释这项技术如何工作。
Canny的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:好的检测- 算法能够尽可能多地标识出图像中的实际边缘。好的定位- 标识出的边缘要与实际图像中的实际边缘尽可能接近。最小响应- 图像中的边缘只能标识一次,并且可能存在的图像噪声不应标识为边缘。为了满足这些要求Canny使用了变分法,这是一种寻找满足特定功能的函数的方法。最优检测使用四个指数函数项的和表示,但是它非常近似于高斯函数的一阶导数。
3、步骤。
(1)高斯过滤。
(2)Sobel边缘检测(其他的边缘检测方法也可以)。
(3)非极大值抑制。
(4)双阈值检测。
二、高斯过滤
1、介绍。
任何边缘检测算法都不可能在未经处理的原始数据上很好地处理,所以第一步是对原始数据与高斯平滑模板作卷积,得到的图像与原始图
还没有评论,来说两句吧...