极限(高等数学)

淡淡的烟草味﹌ 2022-12-10 14:53 338阅读 0赞

极限

一、极限

  • 对于数列 { X n } \{X_n\} { Xn​},当 n → ∞ n→∞ n→∞时, X n X_n Xn​无限趋近于常数A,则称当n趋于无穷大时,常数A为数列 { X n } \{X_n\} { Xn​}的极限,或称数列 { X n } \{X_n\} { Xn​}收敛于A,记作:

    lim ⁡ n → ∞ X n = A 或 X n → A ( n → ∞ ) \lim \limits_{n→∞}X_n = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ X_n→A(n→∞) n→∞lim​Xn​=A 或 Xn​→A(n→∞)

  • 对于函数 y = f ( x ) y=f(x) y=f(x),当 x → ∞ x→∞ x→∞时, f ( x ) f(x) f(x)无限趋近于常数A,则称A为函数 f ( x ) f(x) f(x)当 x → ∞ x→∞ x→∞时的极限,记作:

    lim ⁡ x → ∞ f ( x ) = A 或 f ( x ) → A ( x → ∞ ) \lim \limits_{x→∞}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→∞) x→∞lim​f(x)=A 或 f(x)→A(x→∞)

  • 对于函数 y = f ( x ) y=f(x) y=f(x),当 x → + ∞ x→+∞ x→+∞( x → − ∞ x→-∞ x→−∞)时, f ( x ) f(x) f(x)无限趋近于常数A,则称A为函数 f ( x ) f(x) f(x)当 x → + ∞ x→+∞ x→+∞( x → − ∞ x→-∞ x→−∞)时的极限,记作:

    lim ⁡ x → + ∞ f ( x ) = A 或 f ( x ) → A ( x → + ∞ ) \lim \limits_{x→+∞}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→+∞) x→+∞lim​f(x)=A 或 f(x)→A(x→+∞)
    lim ⁡ x → − ∞ f ( x ) = A 或 f ( x ) → A ( x → − ∞ ) \lim \limits_{x→-∞}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→-∞) x→−∞lim​f(x)=A 或 f(x)→A(x→−∞)

极限 lim ⁡ x → ∞ f ( x ) \lim \limits_{x→∞}f(x) x→∞lim​f(x)存在 ⇔ \Leftrightarrow ⇔极限 lim ⁡ x → + ∞ f ( x ) \lim \limits_{x→+∞}f(x) x→+∞lim​f(x)和 lim ⁡ x → − ∞ f ( x ) \lim \limits_{x→-∞}f(x) x→−∞lim​f(x)存在且相等。

  • 对于函数 y = f ( x ) y=f(x) y=f(x),当 x x x无限趋近于 x 0 x_0 x0​时, f ( x ) f(x) f(x)无限趋近于常数A,则称A为函数 f ( x ) f(x) f(x)当 x → x 0 x→x_0 x→x0​时的极限,记作:

    lim ⁡ x → x 0 f ( x ) = A 或 f ( x ) → A ( x → x 0 ) \lim \limits_{x→x_0}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→x_0) x→x0​lim​f(x)=A 或 f(x)→A(x→x0​)

  • 对于函数 y = f ( x ) y=f(x) y=f(x),当 x x x从 x 0 x_0 x0​的左(右)无限趋近于 x 0 x_0 x0​时, f ( x ) f(x) f(x)无限趋近于常数A,则称A为函数 f ( x ) f(x) f(x)当 x → x 0 x→x_0 x→x0​时的左(右)极限,记作:

    lim ⁡ x → x 0 − f ( x ) = A 或 f ( x ) → A ( x → x 0 − ) \lim \limits_{x→x_0^-}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→x_0^-) x→x0−​lim​f(x)=A 或 f(x)→A(x→x0−​)
    lim ⁡ x → x 0 + f ( x ) = A 或 f ( x ) → A ( x → x 0 + ) \lim \limits_{x→x_0^+}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→x_0^+) x→x0+​lim​f(x)=A 或 f(x)→A(x→x0+​)

极限 lim ⁡ x → x 0 f ( x ) \lim \limits_{x→x_0}f(x) x→x0​lim​f(x)存在 ⇔ \Leftrightarrow ⇔极限 lim ⁡ x → x 0 − f ( x ) \lim \limits_{x→x_0^-}f(x) x→x0−​lim​f(x)和 lim ⁡ x → x 0 + f ( x ) \lim \limits_{x→x_0^+}f(x) x→x0+​lim​f(x)存在且相等。

  • 两个重要极限:

    ① lim ⁡ x → 0 s i n x x = 1 ( 0 0 型 ) ①\lim \limits_{x→0}\frac{sinx}{x}=1\ \ \ \ \ \ \ \ \ \ (\frac{0}{0}型) ①x→0lim​xsinx​=1 (00​型)

    ② lim ⁡ x → ∞ ( 1 + 1 x ) x = e ( 1 ∞ 型 ) ②\lim \limits_{x→∞}(1+\frac{1}{x})^x=e\ \ \ \ \ \ \ \ \ \ (1^∞型) ②x→∞lim​(1+x1​)x=e (1∞型)

(1)无穷小量
  • 当自变量 x → x 0 x→x_0 x→x0​(或 x → ∞ x→∞ x→∞)时,函数 f ( x ) f(x) f(x)的极限值为零,则称当 x → x 0 x→x_0 x→x0​(或 x → ∞ x→∞ x→∞)时,函数 f ( x ) f(x) f(x)为无穷小量,简称无穷小,记作:

    lim ⁡ x → x 0 f ( x ) = 0 ( 或 lim ⁡ x → ∞ f ( x ) = 0 ) \lim \limits_{x→x_0}f(x) = 0\ \ \ \ \ \ \ \ \ \ (或\lim \limits_{x→∞}f(x) = 0) x→x0​lim​f(x)=0 (或x→∞lim​f(x)=0)

  • 设 α α α和 β β β是同一过程的无穷小量,即 lim ⁡ α = 0 \lim α = 0 limα=0, lim ⁡ β = 0 \lim β = 0 limβ=0
    ① ① ①如果 α β = 0 \frac{α}{β} = 0 βα​=0,则称 α α α是比 β β β高阶的无穷小量,记作:
    α = o ( β ) α = o(β) α=o(β)

    ② ② ②如果 α β = C ≠ 0 \frac{α}{β} = C ≠ 0 βα​=C​=0,则称 α α α是与 β β β同价的无穷小量

    ③ ③ ③如果 α β = C = 1 \frac{α}{β} = C = 1 βα​=C=1,则称 α α α与 β β β是等价的无穷小量,记作:
    α α α ~ β β β

    ④ ④ ④如果 α β = ∞ \frac{α}{β} = ∞ βα​=∞,则称 α α α是比 β β β底价的无穷小量

  • 常用等价无穷小:
    当 x → 0 x→0 x→0时, x x x ~ s i n x sinx sinx ~ a r c s i n x arcsinx arcsinx ~ t a n x tanx tanx ~ a r c t a n x arctanx arctanx ~ I n ( 1 + x ) In(1+x) In(1+x) ~ e x − 1 e^x-1 ex−1,
    1 − c o s x 1-cosx 1−cosx ~ 1 2 x 2 \frac{1}{2}x^2 21​x2,
    ( 1 + x ) μ − 1 (1+x)^μ-1 (1+x)μ−1 ~ μ x μx μx( μ μ μ为实常数, μ ≠ 0 μ≠0 μ​=0)。

有限个无穷小量的和、差、积仍为无穷小量。

无穷小量与有界量之积仍为无穷小量。

若极限 lim ⁡ x → x 0 ( x → ∞ ) f ( x ) = A \lim \limits_{x→x_0(x→∞)}f(x)=A x→x0​(x→∞)lim​f(x)=A,则 f ( x ) = A + a f(x)=A+a f(x)=A+a,且 lim ⁡ x → x 0 ( x → ∞ ) a = 0 \lim \limits_{x→x_0(x→∞)}a=0 x→x0​(x→∞)lim​a=0。

(2)无穷大量
  • 当自变量 x → x 0 x→x_0 x→x0​(或 x → ∞ x→∞ x→∞)时,函数 f ( x ) f(x) f(x)的绝对值无限增大,则称当 x → x 0 x→x_0 x→x0​(或 x → ∞ x→∞ x→∞)时,函数 f ( x ) f(x) f(x)为无穷大量,简称无穷大,记作:

    lim ⁡ x → x 0 f ( x ) = ∞ ( 或 lim ⁡ x → ∞ f ( x ) = ∞ ) \lim \limits_{x→x_0}f(x) = ∞\ \ \ \ \ \ \ \ \ \ (或\lim \limits_{x→∞}f(x) = ∞) x→x0​lim​f(x)=∞ (或x→∞lim​f(x)=∞)

在同一变化过程中,如果 f ( x ) f(x) f(x)为无穷大量,则 1 f ( x ) \frac{1}{f(x)} f(x)1​为无穷小量;反之,如果 f ( x ) f(x) f(x)为无穷小量,且 f ( x ) ≠ 0 f(x)≠0 f(x)​=0,则 1 f ( x ) \frac{1}{f(x)} f(x)1​为无穷大量。

(3)数列极限的性质

唯一性:若数列 { x n } \{x_n\} { xn​}收敛,则其极限值必定唯一。

有界性:若数列 { x n } \{x_n\} { xn​}收敛,则它必定有界。

夹逼性:若数列 { x n } \{x_n\} { xn​}, { y n } \{y_n\} { yn​}, { z n } \{z_n\} { zn​}满足不等式 x n ≤ y n ≤ z n \ x_n \leq y_n \leq z_n xn​≤yn​≤zn​,且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = A \lim \limits_{n→∞}x_n=\lim \limits_{n→∞}z_n=A n→∞lim​xn​=n→∞lim​zn​=A,则 lim ⁡ n → ∞ y n = A \lim \limits_{n→∞}y_n=A n→∞lim​yn​=A。

收敛准则:单调有界数列必有极限。

四则运算性质:设有数列 { x n } \{x_n\} { xn​}, { y n } \{y_n\} { yn​},如果 lim ⁡ n → ∞ x n = A \lim \limits_{n→∞}x_n=A n→∞lim​xn​=A, lim ⁡ n → ∞ y n = B \lim \limits_{n→∞}y_n=B n→∞lim​yn​=B,则
① lim ⁡ n → ∞ ( x n ± y n ) = lim ⁡ n → ∞ x n ± lim ⁡ n → ∞ y n = A ± B ①\lim \limits_{n→∞}(x_n±y_n)=\lim \limits_{n→∞}x_n±\lim \limits_{n→∞}y_n=A±B ①n→∞lim​(xn​±yn​)=n→∞lim​xn​±n→∞lim​yn​=A±B

② lim ⁡ n → ∞ ( x n ⋅ y n ) = lim ⁡ n → ∞ x n ⋅ lim ⁡ n → ∞ y n = A ⋅ B ②\lim \limits_{n→∞}(x_n·y_n)=\lim \limits_{n→∞}x_n·\lim \limits_{n→∞}y_n=A·B ②n→∞lim​(xn​⋅yn​)=n→∞lim​xn​⋅n→∞lim​yn​=A⋅B

③ 当 B ≠ 0 时 , lim ⁡ n → ∞ x n y n = lim ⁡ n → ∞ x n lim ⁡ n → ∞ y n = A B ③当B≠0时,\lim \limits_{n→∞}\frac{x_n}{y_n}=\frac{\lim \limits_{n→∞}x_n}{\lim \limits_{n→∞}y_n}=\frac{A}{B} ③当B​=0时,n→∞lim​yn​xn​​=n→∞lim​yn​n→∞lim​xn​​=BA​

(4)函数极限的性质

唯一性:如果 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x→x_0}f(x)=A x→x0​lim​f(x)=A存在,则其极限值必定唯一。

夹逼性:设函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x), h ( x ) h(x) h(x)在点 x 0 x_0 x0​的某个领域内(点 x 0 x_0 x0​可除外)满足条件 f ( x ) ≤ g ( x ) ≤ h ( x ) \ f(x) \leq g(x) \leq h(x) f(x)≤g(x)≤h(x),且 lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 h ( x ) = A \lim \limits_{x→x_0}f(x)=\lim \limits_{x→x_0}h(x)=A x→x0​lim​f(x)=x→x0​lim​h(x)=A,则 lim ⁡ x → x 0 g ( x ) = A \lim \limits_{x→x_0}g(x)=A x→x0​lim​g(x)=A
注:该结论对 x → ∞ x→∞ x→∞的情况也成立。

四则运算性质:如果有 lim ⁡ x → ∞ f ( x ) = A \lim \limits_{x→∞}f(x)=A x→∞lim​f(x)=A, lim ⁡ x → ∞ g ( x ) = B \lim \limits_{x→∞}g(x)=B x→∞lim​g(x)=B,则
① lim ⁡ x → ∞ ( f ( x ) ± g ( x ) ) = lim ⁡ x → ∞ f ( x ) ± lim ⁡ x → ∞ g ( x ) = A ± B ①\lim \limits_{x→∞}(f(x)±g(x))=\lim \limits_{x→∞}f(x)±\lim \limits_{x→∞}g(x)=A±B ①x→∞lim​(f(x)±g(x))=x→∞lim​f(x)±x→∞lim​g(x)=A±B

② lim ⁡ x → ∞ ( f ( x ) ⋅ g ( x ) ) = lim ⁡ x → ∞ f ( x ) ⋅ lim ⁡ x → ∞ g ( x ) = A ⋅ B ②\lim \limits_{x→∞}(f(x)·g(x))=\lim \limits_{x→∞}f(x)·\lim \limits_{x→∞}g(x)=A·B ②x→∞lim​(f(x)⋅g(x))=x→∞lim​f(x)⋅x→∞lim​g(x)=A⋅B

③ 当 B ≠ 0 时 , lim ⁡ x → ∞ f ( x ) g ( x ) = lim ⁡ x → ∞ f ( x ) lim ⁡ x → ∞ g ( x ) = A B ③当B≠0时,\lim \limits_{x→∞}\frac{f(x)}{g(x)}=\frac{\lim \limits_{x→∞}f(x)}{\lim \limits_{x→∞}g(x)}=\frac{A}{B} ③当B​=0时,x→∞lim​g(x)f(x)​=x→∞lim​g(x)x→∞lim​f(x)​=BA​
注:可将法则中 x → ∞ x→∞ x→∞换成 x → x 0 x→x_0 x→x0​, x → x 0 − x→x_0^- x→x0−​, x → x 0 + x→x_0^+ x→x0+​, x → + ∞ x→+∞ x→+∞, x → − ∞ x→-∞ x→−∞等任意一种自变量变化趋势,性质仍成立。

常用解题方法

第一种:因式分解

因式分解后消去零因子,此种方法多用于分子分母都为多项式的情况。

例: lim ⁡ x → 1 x 4 − 1 x 3 − 1 \lim \limits_{x→1}\frac{x^4-1}{x^3-1} x→1lim​x3−1x4−1​

当 x x x 无限趋近与一个确定的常数,首先考虑代入,通过代入发现分母 x 3 − 1 = 0 x^3-1=0 x3−1=0,因此不可取;分子 x 4 − 1 x^4-1 x4−1可通过平方差得到 ( x 2 + 1 ) ( x 2 − 1 ) (x^2+1)(x^2-1) (x2+1)(x2−1),分母 x 3 − 1 x^3-1 x3−1可通过立方差得到 ( x − 1 ) ( x 2 + x + 1 ) (x-1)(x^2+x+1) (x−1)(x2+x+1),如下:

lim ⁡ x → 1 x 4 − 1 x 3 − 1 = lim ⁡ x → 1 ( x 2 + 1 ) ( x 2 − 1 ) ( x − 1 ) ( x 2 + x + 1 ) \lim \limits_{x→1}\frac{x^4-1}{x^3-1}=\lim \limits_{x→1}\frac{(x^2+1)(x^2-1)}{(x-1)(x^2+x+1)} x→1lim​x3−1x4−1​=x→1lim​(x−1)(x2+x+1)(x2+1)(x2−1)​

再把 x = 1 x=1 x=1代入发现分母 ( x − 1 ) ( x 2 + x + 1 ) = 0 (x-1)(x^2+x+1)=0 (x−1)(x2+x+1)=0,因此仍然不可取;分子 ( x 2 + 1 ) ( x 2 − 1 ) (x^2+1)(x^2-1) (x2+1)(x2−1)右边的乘数还可通过平方差得到 ( x 2 + 1 ) ( x + 1 ) ( x − 1 ) (x^2+1)(x+1)(x-1) (x2+1)(x+1)(x−1),这时的分子分母同时存在乘数 ( x − 1 ) (x-1) (x−1),约掉如下:

lim ⁡ x → 1 ( x 2 + 1 ) ( x 2 − 1 ) ( x − 1 ) ( x 2 + x + 1 ) = lim ⁡ x → 1 ( x 2 + 1 ) ( x + 1 ) ( x − 1 ) ( x − 1 ) ( x 2 + x + 1 ) = lim ⁡ x → 1 ( x 2 + 1 ) ( x + 1 ) x 2 + x + 1 \lim \limits_{x→1}\frac{(x^2+1)(x^2-1)}{(x-1)(x^2+x+1)}=\lim \limits_{x→1}\frac{(x^2+1)(x+1)(x-1)}{(x-1)(x^2+x+1)}=\lim \limits_{x→1}\frac{(x^2+1)(x+1)}{x^2+x+1} x→1lim​(x−1)(x2+x+1)(x2+1)(x2−1)​=x→1lim​(x−1)(x2+x+1)(x2+1)(x+1)(x−1)​=x→1lim​x2+x+1(x2+1)(x+1)​

再把 x = 1 x=1 x=1代入发现分母 x 2 + x + 1 ≠ 0 x^2+x+1≠0 x2+x+1​=0,最后得到结果 4 3 \frac{4}{3} 34​,如下:

lim ⁡ x → 1 ( x 2 + 1 ) ( x + 1 ) x 2 + x + 1 = ( 1 + 1 ) × ( 1 + 1 ) 1 + 1 + 1 = 4 3 \lim \limits_{x→1}\frac{(x^2+1)(x+1)}{x^2+x+1}=\frac{(1+1)\times(1+1)}{1+1+1}=\frac{4}{3} x→1lim​x2+x+1(x2+1)(x+1)​=1+1+1(1+1)×(1+1)​=34​

第二种:有理化

若待求极限的函数中含有形如 a ± b a±\sqrt b a±b​ 或 a ± b \sqrt a±\sqrt b a​±b​ 的式子,可考虑有理化,以达到消去零因子的目的。

例: lim ⁡ x → 0 x + 1 − 1 x + 1 3 − 1 \lim \limits_{x→0}\frac{\sqrt{x+1}-1}{\sqrt[3]{x+1}-1} x→0lim​3x+1​−1x+1​−1​

首先考虑代入,通过代入发现分母 x + 1 3 − 1 = 0 \sqrt[3]{x+1}-1=0 3x+1​−1=0,因此不可取;分子 x + 1 − 1 \sqrt{x+1}-1 x+1​−1可乘以 x + 1 + 1 \sqrt{x+1}+1 x+1​+1再通过平方差得到 x x x,如下:

lim ⁡ x → 0 x + 1 − 1 x + 1 3 − 1 = lim ⁡ x → 0 ( x + 1 − 1 ) ( x + 1 + 1 ) ( x + 1 3 − 1 ) ( x + 1 + 1 ) = lim ⁡ x → 0 ( x + 1 ) 2 − 1 2 ( x + 1 3 − 1 ) ( x + 1 + 1 ) = lim ⁡ x → 0 x ( x + 1 3 − 1 ) ( x + 1 + 1 ) \lim \limits_{x→0}\frac{\sqrt{x+1}-1}{\sqrt[3]{x+1}-1}=\lim \limits_{x→0}\frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{(\sqrt[3]{x+1}-1)(\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{(\sqrt{x+1})^2-1^2}{(\sqrt[3]{x+1}-1)(\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{x}{(\sqrt[3]{x+1}-1)(\sqrt{x+1}+1)} x→0lim​3x+1​−1x+1​−1​=x→0lim​(3x+1​−1)(x+1​+1)(x+1​−1)(x+1​+1)​=x→0lim​(3x+1​−1)(x+1​+1)(x+1​)2−12​=x→0lim​(3x+1​−1)(x+1​+1)x​

再把 x = 0 x=0 x=0代入发现分母 ( x + 1 3 − 1 ) ( x + 1 − 1 ) = 0 (\sqrt[3]{x+1}-1)(\sqrt{x+1}-1)=0 (3x+1​−1)(x+1​−1)=0,因此仍然不可取;分母 ( x + 1 3 − 1 ) ( x + 1 − 1 ) (\sqrt[3]{x+1}-1)(\sqrt{x+1}-1) (3x+1​−1)(x+1​−1)右边的乘数可通过乘以 [ ( x + 1 ) 2 3 + x + 1 3 + 1 ] [\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1] [3(x+1)2​+3x+1​+1]得到 x x x,这时的分子分母同时存在 x x x,约掉如下:

lim ⁡ x → 0 x ( x + 1 3 − 1 ) ( x + 1 + 1 ) = lim ⁡ x → 0 x [ ( x + 1 ) 2 3 + x + 1 3 + 1 ] ( x + 1 3 − 1 ) [ ( x + 1 ) 2 3 + x + 1 3 + 1 ] ( x + 1 + 1 ) = lim ⁡ x → 0 x [ ( x + 1 ) 2 3 + x + 1 3 + 1 ] x ( x + 1 + 1 ) = lim ⁡ x → 0 ( x + 1 ) 2 3 + x + 1 3 + 1 x + 1 + 1 \lim \limits_{x→0}\frac{x}{(\sqrt[3]{x+1}-1)(\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{x[\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1]}{(\sqrt[3]{x+1}-1)[\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1](\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{x[\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1]}{x(\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1}{\sqrt{x+1}+1} x→0lim​(3x+1​−1)(x+1​+1)x​=x→0lim​(3x+1​−1)[3(x+1)2​+3x+1​+1](x+1​+1)x[3(x+1)2​+3x+1​+1]​=x→0lim​x(x+1​+1)x[3(x+1)2​+3x+1​+1]​=x→0lim​x+1​+13(x+1)2​+3x+1​+1​

再把 x = 0 x=0 x=0代入发现分母 x + 1 + 1 ≠ 0 \sqrt{x+1}+1≠0 x+1​+1​=0,最后得到结果 3 2 \frac{3}{2} 23​,如下:

lim ⁡ x → 0 ( x + 1 ) 2 3 + x + 1 3 + 1 x + 1 + 1 = ( 0 + 1 ) 2 3 + 0 + 1 3 + 1 0 + 1 + 1 = 3 2 \lim \limits_{x→0}\frac{\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1}{\sqrt{x+1}+1}=\frac{\sqrt[3]{(0+1)^2}+\sqrt[3]{0+1}+1}{\sqrt{0+1}+1}=\frac{3}{2} x→0lim​x+1​+13(x+1)2​+3x+1​+1​=0+1​+13(0+1)2​+30+1​+1​=23​

由于 x → 0 x→0 x→0,根据 ( 1 + x ) μ − 1 (1+x)^μ-1 (1+x)μ−1 ~ μ x μx μx 可得到 x + 1 − 1 = ( x + 1 ) 1 2 − 1 \sqrt{x+1}-1=(x+1)^{\frac{1}{2}}-1 x+1​−1=(x+1)21​−1 ~ 1 2 x \frac{1}{2}x 21​x, x + 1 3 − 1 = ( x + 1 ) 1 3 − 1 \sqrt[3]{x+1}-1=(x+1)^{\frac{1}{3}}-1 3x+1​−1=(x+1)31​−1 ~ 1 3 x \frac{1}{3}x 31​x;也可通过无穷小代换求极限。

lim ⁡ x → 0 x + 1 − 1 x + 1 3 − 1 = lim ⁡ x → 0 ( x + 1 ) 1 2 − 1 ( x + 1 ) 1 3 − 1 = 1 2 x 1 3 x = 3 2 \lim \limits_{x→0}\frac{\sqrt{x+1}-1}{\sqrt[3]{x+1}-1}=\lim \limits_{x→0}\frac{(x+1)^{\frac{1}{2}}-1}{(x+1)^{\frac{1}{3}}-1}=\frac{\frac{1}{2}x}{\frac{1}{3}x}=\frac{3}{2} x→0lim​3x+1​−1x+1​−1​=x→0lim​(x+1)31​−1(x+1)21​−1​=31​x21​x​=23​

第三种:重要极限

函数中含有正弦函数或隐含有正弦函数(即稍作变化可出现正弦函数)时,可考虑使用重要极限 lim ⁡ x → 0 s i n x x = 1 \lim \limits_{x→0}\frac{sinx}{x}=1 x→0lim​xsinx​=1。

例: lim ⁡ x → π 4 t a n 2 x ⋅ t a n ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}tan2x·tan(\frac{π}{4}-x) x→4π​lim​tan2x⋅tan(4π​−x)

根据 t a n α = s i n α c o s α tanα=\frac{sinα}{cosα} tanα=cosαsinα​得到 lim ⁡ x → π 4 s i n 2 x c o s 2 x ⋅ s i n ( π 4 − x ) c o s ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}\frac{sin2x}{cos2x}·\frac{sin(\frac{π}{4}-x)}{cos(\frac{π}{4}-x)} x→4π​lim​cos2xsin2x​⋅cos(4π​−x)sin(4π​−x)​,根据四则运算得到 lim ⁡ x → π 4 s i n 2 x lim ⁡ x → π 4 c o s 2 x ⋅ lim ⁡ x → π 4 s i n ( π 4 − x ) lim ⁡ x → π 4 c o s ( π 4 − x ) \frac{\lim \limits_{x→\frac{π}{4}}sin2x}{\lim \limits_{x→\frac{π}{4}}cos2x}·\frac{\lim \limits_{x→\frac{π}{4}}sin(\frac{π}{4}-x)}{\lim \limits_{x→\frac{π}{4}}cos(\frac{π}{4}-x)} x→4π​lim​cos2xx→4π​lim​sin2x​⋅x→4π​lim​cos(4π​−x)x→4π​lim​sin(4π​−x)​,由于 lim ⁡ x → π 4 s i n 2 x = 1 \lim \limits_{x→\frac{π}{4}}sin2x=1 x→4π​lim​sin2x=1, lim ⁡ x → π 4 c o s ( π 4 − x ) = 1 \lim \limits_{x→\frac{π}{4}}cos(\frac{π}{4}-x)=1 x→4π​lim​cos(4π​−x)=1,化简得到 lim ⁡ x → π 4 s i n ( π 4 − x ) c o s 2 x \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{cos2x} x→4π​lim​cos2xsin(4π​−x)​,如下:

lim ⁡ x → π 4 t a n 2 x ⋅ t a n ( π 4 − x ) = lim ⁡ x → π 4 s i n 2 x c o s 2 x ⋅ s i n ( π 4 − x ) c o s ( π 4 − x ) = lim ⁡ x → π 4 s i n 2 x lim ⁡ x → π 4 c o s 2 x ⋅ lim ⁡ x → π 4 s i n ( π 4 − x ) lim ⁡ x → π 4 c o s ( π 4 − x ) = lim ⁡ x → π 4 s i n ( π 4 − x ) c o s 2 x \lim \limits_{x→\frac{π}{4}}tan2x·tan(\frac{π}{4}-x)=\lim \limits_{x→\frac{π}{4}}\frac{sin2x}{cos2x}·\frac{sin(\frac{π}{4}-x)}{cos(\frac{π}{4}-x)}=\frac{\lim \limits_{x→\frac{π}{4}}sin2x}{\lim \limits_{x→\frac{π}{4}}cos2x}·\frac{\lim \limits_{x→\frac{π}{4}}sin(\frac{π}{4}-x)}{\lim \limits_{x→\frac{π}{4}}cos(\frac{π}{4}-x)}=\lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{cos2x} x→4π​lim​tan2x⋅tan(4π​−x)=x→4π​lim​cos2xsin2x​⋅cos(4π​−x)sin(4π​−x)​=x→4π​lim​cos2xx→4π​lim​sin2x​⋅x→4π​lim​cos(4π​−x)x→4π​lim​sin(4π​−x)​=x→4π​lim​cos2xsin(4π​−x)​

根据诱导公式 c o s x = s i n ( π 2 − x ) cosx=sin(\frac{π}{2}-x) cosx=sin(2π​−x)可得知 c o s 2 x = s i n ( π 2 − 2 x ) cos2x=sin(\frac{π}{2}-2x) cos2x=sin(2π​−2x),得到 lim ⁡ x → π 4 s i n ( π 4 − x ) s i n ( π 2 − 2 x ) \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin(\frac{π}{2}-2x)} x→4π​lim​sin(2π​−2x)sin(4π​−x)​,再将分母化简得到 lim ⁡ x → π 4 s i n ( π 4 − x ) s i n 2 ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin2(\frac{π}{4}-x)} x→4π​lim​sin2(4π​−x)sin(4π​−x)​,如下:

lim ⁡ x → π 4 s i n ( π 4 − x ) c o s 2 x = lim ⁡ x → π 4 s i n ( π 4 − x ) s i n ( π 2 − 2 x ) = lim ⁡ x → π 4 s i n ( π 4 − x ) s i n 2 ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{cos2x}=\lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin(\frac{π}{2}-2x)}=\lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin2(\frac{π}{4}-x)} x→4π​lim​cos2xsin(4π​−x)​=x→4π​lim​sin(2π​−2x)sin(4π​−x)​=x→4π​lim​sin2(4π​−x)sin(4π​−x)​

由于 x → π 4 x→\frac{π}{4} x→4π​,因此 π 4 − x → 0 \frac{π}{4}-x→0 4π​−x→0、 2 ( π 4 − x ) → 0 2(\frac{π}{4}-x)→0 2(4π​−x)→0,分子 s i n ( π 4 − x ) sin(\frac{π}{4}-x) sin(4π​−x)、分母 s i n 2 ( π 4 − x ) sin2(\frac{π}{4}-x) sin2(4π​−x)都能使用重要极限 lim ⁡ x → 0 s i n x x = 1 ( 0 0 型 ) \lim \limits_{x→0}\frac{sinx}{x}=1(\frac{0}{0}型) x→0lim​xsinx​=1(00​型),得 lim ⁡ x → π 4 π 4 − x 2 ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}\frac{\frac{π}{4}-x}{2(\frac{π}{4}-x)} x→4π​lim​2(4π​−x)4π​−x​,最后约分得 1 2 \frac{1}{2} 21​,如下:

lim ⁡ x → π 4 s i n ( π 4 − x ) s i n 2 ( π 4 − x ) = lim ⁡ x → π 4 π 4 − x 2 ( π 4 − x ) = 1 2 \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin2(\frac{π}{4}-x)}=\lim \limits_{x→\frac{π}{4}}\frac{\frac{π}{4}-x}{2(\frac{π}{4}-x)}=\frac{1}{2} x→4π​lim​sin2(4π​−x)sin(4π​−x)​=x→4π​lim​2(4π​−x)4π​−x​=21​

第四种:等价无穷小代换

等价无穷小代换必须是因子时才可进行,另外要灵活运用,注意等价无穷小形式上的变化。

例: lim ⁡ x → 5 1 − x − 4 x − 5 \lim \limits_{x→5}\frac{1-\sqrt{x-4}}{x-5} x→5lim​x−51−x−4​​

分子 1 − x − 4 等 于 1 − ( x − 4 ) 1 2 1-\sqrt{x-4}等于1-(x-4)^\frac{1}{2} 1−x−4​等于1−(x−4)21​,可化为 − [ ( 1 + x − 5 ) 1 2 − 1 ] -[(1+x-5)^\frac{1}{2}-1] −[(1+x−5)21​−1],由于 x → 5 x→5 x→5,因此 x − 5 → 0 x-5→0 x−5→0,可通过 ( 1 + x ) μ − 1 (1+x)^μ-1 (1+x)μ−1 ~ μ x μx μx进行等价无穷小代换得到 − 1 2 ( x − 5 ) -\frac{1}{2}(x-5) −21​(x−5),最后约分得到 − 1 2 -\frac{1}{2} −21​,如下:

lim ⁡ x → 5 1 − x − 4 x − 5 = lim ⁡ x → 5 1 − ( x − 4 ) 1 2 x − 5 = lim ⁡ x → 5 − [ ( 1 + x − 5 ) 1 2 − 1 ] x − 5 = lim ⁡ x → 5 − 1 2 ( x − 5 ) x − 5 = − 1 2 \lim \limits_{x→5}\frac{1-\sqrt{x-4}}{x-5}=\lim \limits_{x→5}\frac{1-(x-4)^\frac{1}{2}}{x-5}=\lim \limits_{x→5}\frac{-[(1+x-5)^\frac{1}{2}-1]}{x-5}=\lim \limits_{x→5}\frac{-\frac{1}{2}(x-5)}{x-5}=-\frac{1}{2} x→5lim​x−51−x−4​​=x→5lim​x−51−(x−4)21​​=x→5lim​x−5−[(1+x−5)21​−1]​=x→5lim​x−5−21​(x−5)​=−21​

发表评论

表情:
评论列表 (有 0 条评论,338人围观)

还没有评论,来说两句吧...

相关阅读