发表评论取消回复
相关阅读
相关 贝叶斯分类(轻松理解朴素贝叶斯与半朴素贝叶斯)
贝叶斯分类是一类分类[算法][Link 1]的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章
相关 统计学习方法之朴素贝叶斯
1.贝叶斯 1.后验概率 贝叶斯的厉害之处就在于他是一种基于后验概率的统计理论,先解释一下,先验概率是通过经验判断某件事发生的概率;条件概率是已经x发生的条件下y发生的
相关 贝叶斯统计模型java代码_贝叶斯统计概要(待修改)
一:频率派,贝叶斯派的哲学 现在考虑一个最最基本的问题,到底什么是概率?当然概率已经是在数学上严格的,良好定义的,这要归功于30年代大数学家A.N.Kolmogrov的概率论
相关 贝叶斯网络
贝叶斯网络、马尔科夫随机场(MRF, Markov RandomField)和因子图都属于概念图,因此它们都归属于机器学习中的概念图模型(PGM,Probability Gra
相关 用于贝叶斯统计的R包
[http://cran.r-project.org/web/views/Bayesian.html][http_cran.r-project.org_web_views_Ba
相关 《统计学习方法》 朴素贝叶斯 贝叶斯估计 Python实现
代码可在Github上下载:[代码下载][Link 1] 前言 由于使用极大似然估计会出现概率值为0的情况,这会影响后续的计算。比如当有一个后验概率为0的时候,那么会使
相关 贝叶斯、朴素贝叶斯的一些思考
动机概述 最近在学习贝叶斯和朴素贝叶斯,两者是有一定区别的,网上有很多介绍的文章可以自行搜索。可是我不认为自己已经完全理解,因此暂时还不敢进行相关的总结。 本文的动机是
还没有评论,来说两句吧...