相似图片搜索的原理 青旅半醒 2022-07-14 07:58 239阅读 0赞 最近在做一些东西,想到计算两幅图片的相似程度,在知乎上看到这篇文章,特转下来看。 作者:阮一峰 一个对话框会出现。 你输入网片的网址,或者直接上传图片,Google就会找出与其相似的图片。下面这张图片是美国女演员Alyson Hannigan。 上传后,Google返回如下结果: 类似的”相似图片搜索引擎”还有不少,TinEye甚至可以找出照片的拍摄背景。 ========================================================== 这种技术的原理是什么?计算机怎么知道两张图片相似呢? 根据Neal Krawetz博士的解释,原理非常简单易懂。我们可以用一个快速算法,就达到基本的效果。 这里的关键技术叫做”感知哈希算法”(Perceptual hash algorithm),它的作用是对每张图片生成一个”指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。 下面是一个最简单的实现: 第一步,缩小尺寸。 将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。 第二步,简化色彩。 将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。 第三步,计算平均值。 计算所有64个像素的灰度平均值。 第四步,比较像素的灰度。 将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。 第五步,计算哈希值。 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。 = = 8f373714acfcf4d0 得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算“汉明距离”(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。 具体的代码实现,可以参见Wote用python语言写的imgHash.py。代码很短,只有53行。使用的时候,第一个参数是基准图片,第二个参数是用来比较的其他图片所在的目录,返回结果是两张图片之间不相同的数据位数量(汉明距离)。 这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。 实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。 二年前,我写了《相似图片搜索的原理》,介绍了一种最简单的实现方法。 昨天,我在isnowfy的网站看到,还有其他两种方法也很简单,这里做一些笔记。 一、颜色分布法 每张图片都可以生成颜色分布的直方图(color histogram)。如果两张图片的直方图很接近,就可以认为它们很相似。 任何一种颜色都是由红绿蓝三原色(RGB)构成的,所以上图共有4张直方图(三原色直方图 + 最后合成的直方图)。 如果每种原色都可以取256个值,那么整个颜色空间共有1600万种颜色(256的三次方)。针对这1600万种颜色比较直方图,计算量实在太大了,因此需要采用简化方法。可以将0~255分成四个区:0~63为第0区,64~127为第1区,128~191为第2区,192~255为第3区。这意味着红绿蓝分别有4个区,总共可以构成64种组合(4的3次方)。 任何一种颜色必然属于这64种组合中的一种,这样就可以统计每一种组合包含的像素数量。 上图是某张图片的颜色分布表,将表中最后一栏提取出来,组成一个64维向量(7414, 230, 0, 0, 8, …, 109, 0, 0, 3415, 53929)。这个向量就是这张图片的特征值或者叫”指纹”。 于是,寻找相似图片就变成了找出与其最相似的向量。这可以用皮尔逊相关系数或者余弦相似度算出。 二、内容特征法 除了颜色构成,还可以从比较图片内容的相似性入手。 首先,将原图转成一张较小的灰度图片,假定为50x50像素。然后,确定一个阈值,将灰度图片转成黑白图片。 如果两张图片很相似,它们的黑白轮廓应该是相近的。于是,问题就变成了,第一步如何确定一个合理的阈值,正确呈现照片中的轮廓? 显然,前景色与背景色反差越大,轮廓就越明显。这意味着,如果我们找到一个值,可以使得前景色和背景色各自的”类内差异最小”(minimizing the intra-class variance),或者”类间差异最大”(maximizing the inter-class variance),那么这个值就是理想的阈值。 1979年,日本学者大津展之证明了,”类内差异最小”与”类间差异最大”是同一件事,即对应同一个阈值。他提出一种简单的算法,可以求出这个阈值,这被称为“大津法”(Otsu’s method)。下面就是他的计算方法。 假定一张图片共有n个像素,其中灰度值小于阈值的像素为 n1 个,大于等于阈值的像素为 n2 个( n1 + n2 = n )。w1 和 w2 表示这两种像素各自的比重。 w1 = n1 / n w2 = n2 / n 再假定,所有灰度值小于阈值的像素的平均值和方差分别为 μ1 和 σ1,所有灰度值大于等于阈值的像素的平均值和方差分别为 μ2 和 σ2。于是,可以得到 类内差异 = w1(σ1的平方) + w2(σ2的平方) 类间差异 = w1w2(μ1-μ2)^2 可以证明,这两个式子是等价的:得到”类内差异”的最小值,等同于得到”类间差异”的最大值。不过,从计算难度看,后者的计算要容易一些。 下一步用”穷举法”,将阈值从灰度的最低值到最高值,依次取一遍,分别代入上面的算式。使得”类内差异最小”或”类间差异最大”的那个值,就是最终的阈值。具体的实例和Java算法,请看这里。 有了50x50像素的黑白缩略图,就等于有了一个50x50的0-1矩阵。矩阵的每个值对应原图的一个像素,0表示黑色,1表示白色。这个矩阵就是一张图片的特征矩阵。 两个特征矩阵的不同之处越少,就代表两张图片越相似。这可以用”异或运算”实现(即两个值之中只有一个为1,则运算结果为1,否则运算结果为0)。对不同图片的特征矩阵进行”异或运算”,结果中的1越少,就是越相似的图片。" class="reference-link">上个月,Google把“相似图片搜索“正式放上了首页。 你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜索框中照相机的图标。 一个对话框会出现。 你输入网片的网址,或者直接上传图片,Google就会找出与其相似的图片。下面这张图片是美国女演员Alyson Hannigan。 上传后,Google返回如下结果: 类似的”相似图片搜索引擎”还有不少,TinEye甚至可以找出照片的拍摄背景。 ========================================================== 这种技术的原理是什么?计算机怎么知道两张图片相似呢? 根据Neal Krawetz博士的解释,原理非常简单易懂。我们可以用一个快速算法,就达到基本的效果。 这里的关键技术叫做”感知哈希算法”(Perceptual hash algorithm),它的作用是对每张图片生成一个”指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。 下面是一个最简单的实现: 第一步,缩小尺寸。 将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。 第二步,简化色彩。 将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。 第三步,计算平均值。 计算所有64个像素的灰度平均值。 第四步,比较像素的灰度。 将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。 第五步,计算哈希值。 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。 = = 8f373714acfcf4d0 得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算“汉明距离”(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。 具体的代码实现,可以参见Wote用python语言写的imgHash.py。代码很短,只有53行。使用的时候,第一个参数是基准图片,第二个参数是用来比较的其他图片所在的目录,返回结果是两张图片之间不相同的数据位数量(汉明距离)。 这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。 实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。 二年前,我写了《相似图片搜索的原理》,介绍了一种最简单的实现方法。 昨天,我在isnowfy的网站看到,还有其他两种方法也很简单,这里做一些笔记。 一、颜色分布法 每张图片都可以生成颜色分布的直方图(color histogram)。如果两张图片的直方图很接近,就可以认为它们很相似。 任何一种颜色都是由红绿蓝三原色(RGB)构成的,所以上图共有4张直方图(三原色直方图 + 最后合成的直方图)。 如果每种原色都可以取256个值,那么整个颜色空间共有1600万种颜色(256的三次方)。针对这1600万种颜色比较直方图,计算量实在太大了,因此需要采用简化方法。可以将0~255分成四个区:0~63为第0区,64~127为第1区,128~191为第2区,192~255为第3区。这意味着红绿蓝分别有4个区,总共可以构成64种组合(4的3次方)。 任何一种颜色必然属于这64种组合中的一种,这样就可以统计每一种组合包含的像素数量。 上图是某张图片的颜色分布表,将表中最后一栏提取出来,组成一个64维向量(7414, 230, 0, 0, 8, …, 109, 0, 0, 3415, 53929)。这个向量就是这张图片的特征值或者叫”指纹”。 于是,寻找相似图片就变成了找出与其最相似的向量。这可以用皮尔逊相关系数或者余弦相似度算出。 二、内容特征法 除了颜色构成,还可以从比较图片内容的相似性入手。 首先,将原图转成一张较小的灰度图片,假定为50x50像素。然后,确定一个阈值,将灰度图片转成黑白图片。 如果两张图片很相似,它们的黑白轮廓应该是相近的。于是,问题就变成了,第一步如何确定一个合理的阈值,正确呈现照片中的轮廓? 显然,前景色与背景色反差越大,轮廓就越明显。这意味着,如果我们找到一个值,可以使得前景色和背景色各自的”类内差异最小”(minimizing the intra-class variance),或者”类间差异最大”(maximizing the inter-class variance),那么这个值就是理想的阈值。 1979年,日本学者大津展之证明了,”类内差异最小”与”类间差异最大”是同一件事,即对应同一个阈值。他提出一种简单的算法,可以求出这个阈值,这被称为“大津法”(Otsu’s method)。下面就是他的计算方法。 假定一张图片共有n个像素,其中灰度值小于阈值的像素为 n1 个,大于等于阈值的像素为 n2 个( n1 + n2 = n )。w1 和 w2 表示这两种像素各自的比重。 w1 = n1 / n w2 = n2 / n 再假定,所有灰度值小于阈值的像素的平均值和方差分别为 μ1 和 σ1,所有灰度值大于等于阈值的像素的平均值和方差分别为 μ2 和 σ2。于是,可以得到 类内差异 = w1(σ1的平方) + w2(σ2的平方) 类间差异 = w1w2(μ1-μ2)^2 可以证明,这两个式子是等价的:得到”类内差异”的最小值,等同于得到”类间差异”的最大值。不过,从计算难度看,后者的计算要容易一些。 下一步用”穷举法”,将阈值从灰度的最低值到最高值,依次取一遍,分别代入上面的算式。使得”类内差异最小”或”类间差异最大”的那个值,就是最终的阈值。具体的实例和Java算法,请看这里。 有了50x50像素的黑白缩略图,就等于有了一个50x50的0-1矩阵。矩阵的每个值对应原图的一个像素,0表示黑色,1表示白色。这个矩阵就是一张图片的特征矩阵。 两个特征矩阵的不同之处越少,就代表两张图片越相似。这可以用”异或运算”实现(即两个值之中只有一个为1,则运算结果为1,否则运算结果为0)。对不同图片的特征矩阵进行”异或运算”,结果中的1越少,就是越相似的图片。
相关 相似图片搜索中的均值哈希(aHash) 1. 引入 参考1中介绍了相似图片搜索的基本原理,借助milvus(参考2)这样的相似性搜索引擎,我们可以非常快速的实现相似性搜索。 但实现搜索之前,需要把图片转换为特 迷南。/ 2022年11月01日 05:21/ 0 赞/ 230 阅读
相关 相似图片搜索原理三(颜色直方图—c++实现) 图像的颜色直方图可以用于图像检索,适应有相同色彩,并且可以有平移、缩放、旋转不变性的图像检索,当然了这三大特点不如sift或者surf稳定性强,此外最大的局限就是如果形状内容一 悠悠/ 2022年08月08日 12:49/ 0 赞/ 204 阅读
相关 相似图片搜索原理四(内容特征法) 说明:这里为[阮一峰][Link 1]的一篇blog:http://www.ruanyifeng.com/blog/2013/03/similar\_image\_search 我不是女神ヾ/ 2022年08月08日 12:49/ 0 赞/ 179 阅读
相关 相似图片搜索原理二(phash—c++实现) 前段时间介绍过相似图片搜索原理一(ahash) [http://blog.csdn.net/lu597203933/article/details/45101859][http 痛定思痛。/ 2022年08月08日 12:48/ 0 赞/ 248 阅读
相关 相似图片搜索原理一(ahash—c++实现) ahash,全称叫做average hash,应该是phash(perceptual hash, 感知哈希)算法的一种。是基于图像内容搜索最简单的一种(search image 水深无声/ 2022年08月07日 15:34/ 0 赞/ 363 阅读
相关 相似图片搜索的原理 最近在做一些东西,想到计算两幅图片的相似程度,在知乎上看到这篇文章,特转下来看。 [作者:阮一峰][Link 1] 上个月,Google把["相似图片搜索][Link 青旅半醒/ 2022年07月14日 07:58/ 0 赞/ 240 阅读
相关 相似图片搜索算法介绍 前言 之前对图片聚类有一丢丢的研究,最近发现,使用一些相似图片搜索算法也可以实现图片聚类的目标:将同类别或差不多的图片聚在一起。所以整理出相似图片搜索算法介绍这篇文章,主 妖狐艹你老母/ 2022年06月10日 14:06/ 0 赞/ 314 阅读
相关 基于Lire库搜索相似图片 什么是Lire [LIRE(Lucene Image REtrieval)][LIRE_Lucene Image REtrieval]提供一种的简单方式来创建基于图像特性 今天药忘吃喽~/ 2022年05月19日 07:13/ 0 赞/ 240 阅读
相关 以图找图:相似图片搜索的原理 ![1-130402011029141.jpg][] 你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜索框中照相机的图标。 ![0112052B5-0.png] 以你之姓@/ 2022年03月19日 14:23/ 0 赞/ 259 阅读
还没有评论,来说两句吧...