十分钟搞定pandas

﹏ヽ暗。殇╰゛Y 2022-06-08 14:06 303阅读 0赞

转自:http://www.cnblogs.com/chaosimple/p/4153083.html
本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:

  1. In [1]: import pandas as pd
  2. In [2]: import numpy as np
  3. In [3]: import matplotlib.pyplot as plt

一、 创建对象
可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:

  1. In [4]: s = pd.Series([1,3,5,np.nan,6,8])
  2. In [5]: s
  3. Out[5]:
  4. 0 1.0
  5. 1 3.0
  6. 2 5.0
  7. 3 NaN
  8. 4 6.0
  9. 5 8.0
  10. dtype: float64

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:

  1. In [6]: dates = pd.date_range('20130101', periods=6)
  2. In [7]: dates
  3. Out[7]:
  4. DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
  5. '2013-01-05', '2013-01-06'],
  6. dtype='datetime64[ns]', freq='D')
  7. In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
  8. In [9]: df
  9. Out[9]:
  10. A B C D
  11. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  12. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  13. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  14. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  15. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  16. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:

  1. In [10]: df2 = pd.DataFrame({ 'A' : 1.,
  2. ....: 'B' : pd.Timestamp('20130102'),
  3. ....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
  4. ....: 'D' : np.array([3] * 4,dtype='int32'),
  5. ....: 'E' : pd.Categorical(["test","train","test","train"]),
  6. ....: 'F' : 'foo' })
  7. ....:
  8. In [11]: df2
  9. Out[11]:
  10. A B C D E F
  11. 0 1.0 2013-01-02 1.0 3 test foo
  12. 1 1.0 2013-01-02 1.0 3 train foo
  13. 2 1.0 2013-01-02 1.0 3 test foo
  14. 3 1.0 2013-01-02 1.0 3 train foo

4、查看不同列的数据类型:

  1. In [12]: df2.dtypes
  2. Out[12]:
  3. A float64
  4. B datetime64[ns]
  5. C float32
  6. D int32
  7. E category
  8. F object
  9. dtype: object

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

  1. In [13]: df2.<TAB>
  2. df2.A df2.bool
  3. df2.abs df2.boxplot
  4. df2.add df2.C
  5. df2.add_prefix df2.clip
  6. df2.add_suffix df2.clip_lower
  7. df2.align df2.clip_upper
  8. df2.all df2.columns
  9. df2.any df2.combine
  10. df2.append df2.combine_first
  11. df2.apply df2.compound
  12. df2.applymap df2.consolidate
  13. df2.as_blocks df2.convert_objects
  14. df2.asfreq df2.copy
  15. df2.as_matrix df2.corr
  16. df2.astype df2.corrwith
  17. df2.at df2.count
  18. df2.at_time df2.cov
  19. df2.axes df2.cummax
  20. df2.B df2.cummin
  21. df2.between_time df2.cumprod
  22. df2.bfill df2.cumsum
  23. df2.blocks df2.D

二、 查看数据
详情请参阅:Basics Section

1、 查看frame中头部和尾部的行:

  1. In [14]: df.head()
  2. Out[14]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  7. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  8. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  9. In [15]: df.tail(3)
  10. Out[15]:
  11. A B C D
  12. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  13. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
  14. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

2、 显示索引、列和底层的numpy数据:

  1. In [16]: df.index
  2. Out[16]:
  3. DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
  4. '2013-01-05', '2013-01-06'],
  5. dtype='datetime64[ns]', freq='D')
  6. In [17]: df.columns
  7. Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')
  8. In [18]: df.values
  9. Out[18]:
  10. array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]])

3、 describe()函数对于数据的快速统计汇总:

  1. In [19]: df.describe()
  2. Out[19]:
  3. A B C D
  4. count 6.000000 6.000000 6.000000 6.000000
  5. mean 0.073711 -0.431125 -0.687758 -0.233103
  6. std 0.843157 0.922818 0.779887 0.973118
  7. min -0.861849 -2.104569 -1.509059 -1.135632
  8. 25% -0.611510 -0.600794 -1.368714 -1.076610
  9. 50% 0.022070 -0.228039 -0.767252 -0.386188
  10. 75% 0.658444 0.041933 -0.034326 0.461706
  11. max 1.212112 0.567020 0.276232 1.071804

4、 对数据的转置:

  1. In [20]: df.T
  2. Out[20]:
  3. 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
  4. A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
  5. B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
  6. C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
  7. D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

5、 按轴进行排序

  1. In [21]: df.sort_index(axis=1, ascending=False)
  2. Out[21]:
  3. D C B A
  4. 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
  5. 2013-01-02 -1.044236 0.119209 -0.173215 1.212112
  6. 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
  7. 2013-01-04 0.271860 -1.039575 -0.706771 0.721555
  8. 2013-01-05 -1.087401 0.276232 0.567020 -0.424972
  9. 2013-01-06 0.524988 -1.478427 0.113648 -0.673690

6、 按值进行排序

  1. In [22]: df.sort_values(by='B')
  2. Out[22]:
  3. A B C D
  4. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  5. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
  6. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  7. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  8. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
  9. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401

三、 选择
虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing。

l 获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A:

  1. In [23]: df['A']
  2. Out[23]:
  3. 2013-01-01 0.469112
  4. 2013-01-02 1.212112
  5. 2013-01-03 -0.861849
  6. 2013-01-04 0.721555
  7. 2013-01-05 -0.424972
  8. 2013-01-06 -0.673690
  9. Freq: D, Name: A, dtype: float64

2、 通过[]进行选择,这将会对行进行切片

  1. In [24]: df[0:3]
  2. Out[24]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  7. In [25]: df['20130102':'20130104']
  8. Out[25]:
  9. A B C D
  10. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  11. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
  12. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

l 通过标签选择

1、 使用标签来获取一个交叉的区域

  1. In [26]: df.loc[dates[0]]
  2. Out[26]:
  3. A 0.469112
  4. B -0.282863
  5. C -1.509059
  6. D -1.135632
  7. Name: 2013-01-01 00:00:00, dtype: float64

2、 通过标签来在多个轴上进行选择

  1. In [27]: df.loc[:,['A','B']]
  2. Out[27]:
  3. A B
  4. 2013-01-01 0.469112 -0.282863
  5. 2013-01-02 1.212112 -0.173215
  6. 2013-01-03 -0.861849 -2.104569
  7. 2013-01-04 0.721555 -0.706771
  8. 2013-01-05 -0.424972 0.567020
  9. 2013-01-06 -0.673690 0.113648

3、 标签切片

  1. In [28]: df.loc['20130102':'20130104',['A','B']]
  2. Out[28]:
  3. A B
  4. 2013-01-02 1.212112 -0.173215
  5. 2013-01-03 -0.861849 -2.104569
  6. 2013-01-04 0.721555 -0.706771

4、 对于返回的对象进行维度缩减

  1. In [29]: df.loc['20130102',['A','B']]
  2. Out[29]:
  3. A 1.212112
  4. B -0.173215
  5. Name: 2013-01-02 00:00:00, dtype: float64

5、 获取一个标量

  1. In [30]: df.loc[dates[0],'A']
  2. Out[30]: 0.46911229990718628

6、 快速访问一个标量(与上一个方法等价)

  1. In [31]: df.at[dates[0],'A']
  2. Out[31]: 0.46911229990718628

l 通过位置选择

1、 通过传递数值进行位置选择(选择的是行)

In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64

2、 通过数值进行切片,与numpy/python中的情况类似

  1. In [33]: df.iloc[3:5,0:2]
  2. Out[33]:
  3. A B
  4. 2013-01-04 0.721555 -0.706771
  5. 2013-01-05 -0.424972 0.567020

3、 通过指定一个位置的列表,与numpy/python中的情况类似

  1. In [34]: df.iloc[[1,2,4],[0,2]]
  2. Out[34]:
  3. A C
  4. 2013-01-02 1.212112 0.119209
  5. 2013-01-03 -0.861849 -0.494929
  6. 2013-01-05 -0.424972 0.276232

4、 对行进行切片

  1. In [35]: df.iloc[1:3,:]
  2. Out[35]:
  3. A B C D
  4. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  5. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

5、 对列进行切片

  1. In [36]: df.iloc[:,1:3]
  2. Out[36]:
  3. B C
  4. 2013-01-01 -0.282863 -1.509059
  5. 2013-01-02 -0.173215 0.119209
  6. 2013-01-03 -2.104569 -0.494929
  7. 2013-01-04 -0.706771 -1.039575
  8. 2013-01-05 0.567020 0.276232
  9. 2013-01-06 0.113648 -1.478427

6、 获取特定的值

  1. In [37]: df.iloc[1,1]
  2. Out[37]: -0.17321464905330858

l 布尔索引

1、 使用一个单独列的值来选择数据:

  1. In [39]: df[df.A > 0]
  2. Out[39]:
  3. A B C D
  4. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
  5. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
  6. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2、 使用where操作来选择数据:

  1. In [40]: df[df > 0]
  2. Out[40]:
  3. A B C D
  4. 2013-01-01 0.469112 NaN NaN NaN
  5. 2013-01-02 1.212112 NaN 0.119209 NaN
  6. 2013-01-03 NaN NaN NaN 1.071804
  7. 2013-01-04 0.721555 NaN NaN 0.271860
  8. 2013-01-05 NaN 0.567020 0.276232 NaN
  9. 2013-01-06 NaN 0.113648 NaN 0.524988

3、 使用isin()方法来过滤:

  1. In [41]: df2 = df.copy()
  2. In [42]: df2['E'] = ['one', 'one','two','three','four','three']
  3. In [43]: df2
  4. Out[43]:
  5. A B C D E
  6. 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
  7. 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
  8. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
  9. 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
  10. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
  11. 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three
  12. In [44]: df2[df2['E'].isin(['two','four'])]
  13. Out[44]:
  14. A B C D E
  15. 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
  16. 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

l 设置

1、 设置一个新的列:

  1. In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
  2. In [46]: s1
  3. Out[46]:
  4. 2013-01-02 1
  5. 2013-01-03 2
  6. 2013-01-04 3
  7. 2013-01-05 4
  8. 2013-01-06 5
  9. 2013-01-07 6
  10. Freq: D, dtype: int64
  11. In [47]: df['F'] = s1

2、 通过标签设置新的值:

  1. In [48]: df.at[dates[0],'A'] = 0

3、 通过位置设置新的值:

  1. In [49]: df.iat[0,1] = 0

4、 通过一个numpy数组设置一组新值:

  1. In [50]: df.loc[:,'D'] = np.array([5] * len(df))

上述操作结果如下:

  1. In [51]: df
  2. Out[51]:
  3. A B C D F
  4. 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
  5. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
  7. 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
  8. 2013-01-05 -0.424972 0.567020 0.276232 5 4.0
  9. 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0

5、 通过where操作来设置新的值:

  1. In [52]: df2 = df.copy()
  2. In [53]: df2[df2 > 0] = -df2
  3. In [54]: df2
  4. Out[54]:
  5. A B C D F
  6. 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
  7. 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
  8. 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
  9. 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
  10. 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
  11. 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

四、 缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。

1、 reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、

  1. In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
  2. In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
  3. In [57]: df1
  4. Out[57]:
  5. A B C D F E
  6. 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
  7. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
  8. 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
  9. 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

2、 去掉包含缺失值的行:

  1. In [58]: df1.dropna(how='any')
  2. Out[58]:
  3. A B C D F E
  4. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

3、 对缺失值进行填充:

  1. In [59]: df1.fillna(value=5)
  2. Out[59]:
  3. A B C D F E
  4. 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
  5. 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
  6. 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
  7. 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0

4、 对数据进行布尔填充:

  1. In [60]: pd.isnull(df1)
  2. Out[60]:
  3. A B C D F E
  4. 2013-01-01 False False False False True False
  5. 2013-01-02 False False False False False False
  6. 2013-01-03 False False False False False True
  7. 2013-01-04 False False False False False True

五、 相关操作
详情请参与 Basic Section On Binary Ops

l 统计(相关操作通常情况下不包括缺失值)

1、 执行描述性统计:

  1. In [61]: df.mean()
  2. Out[61]:
  3. A -0.004474
  4. B -0.383981
  5. C -0.687758
  6. D 5.000000
  7. F 3.000000
  8. dtype: float64

2、 在其他轴上进行相同的操作:

  1. In [62]: df.mean(1)
  2. Out[62]:
  3. 2013-01-01 0.872735
  4. 2013-01-02 1.431621
  5. 2013-01-03 0.707731
  6. 2013-01-04 1.395042
  7. 2013-01-05 1.883656
  8. 2013-01-06 1.592306
  9. Freq: D, dtype: float64

3、 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)

In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1.0
2013-01-04 3.0
2013-01-05 5.0
2013-01-06 NaN
Freq: D, dtype: float64

In [65]: df.sub(s, axis=’index’)
Out[65]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
2013-01-06 NaN NaN NaN NaN NaN

l Apply

1、 对数据应用函数:

  1. In [66]: df.apply(np.cumsum)
  2. Out[66]:
  3. A B C D F
  4. 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
  5. 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
  6. 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
  7. 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
  8. 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
  9. 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0
  10. In [67]: df.apply(lambda x: x.max() - x.min())
  11. Out[67]:
  12. A 2.073961
  13. B 2.671590
  14. C 1.785291
  15. D 0.000000
  16. F 4.000000
  17. dtype: float64

l 直方图

具体请参照:Histogramming and Discretization

  1. In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
  2. In [69]: s
  3. Out[69]:
  4. 0 4
  5. 1 2
  6. 2 1
  7. 3 2
  8. 4 6
  9. 5 4
  10. 6 4
  11. 7 6
  12. 8 4
  13. 9 4
  14. dtype: int64
  15. In [70]: s.value_counts()
  16. Out[70]:
  17. 4 5
  18. 6 2
  19. 2 2
  20. 1 1
  21. dtype: int64

l 字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

  1. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
  2. In [72]: s.str.lower()
  3. Out[72]:
  4. 0 a
  5. 1 b
  6. 2 c
  7. 3 aaba
  8. 4 baca
  9. 5 NaN
  10. 6 caba
  11. 7 dog
  12. 8 cat
  13. dtype: object

六、 合并
Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

l Concat

  1. In [73]: df = pd.DataFrame(np.random.randn(10, 4))
  2. In [74]: df
  3. Out[74]:
  4. 0 1 2 3
  5. 0 -0.548702 1.467327 -1.015962 -0.483075
  6. 1 1.637550 -1.217659 -0.291519 -1.745505
  7. 2 -0.263952 0.991460 -0.919069 0.266046
  8. 3 -0.709661 1.669052 1.037882 -1.705775
  9. 4 -0.919854 -0.042379 1.247642 -0.009920
  10. 5 0.290213 0.495767 0.362949 1.548106
  11. 6 -1.131345 -0.089329 0.337863 -0.945867
  12. 7 -0.932132 1.956030 0.017587 -0.016692
  13. 8 -0.575247 0.254161 -1.143704 0.215897
  14. 9 1.193555 -0.077118 -0.408530 -0.862495
  15. # break it into pieces
  16. In [75]: pieces = [df[:3], df[3:7], df[7:]]
  17. In [76]: pd.concat(pieces)
  18. Out[76]:
  19. 0 1 2 3
  20. 0 -0.548702 1.467327 -1.015962 -0.483075
  21. 1 1.637550 -1.217659 -0.291519 -1.745505
  22. 2 -0.263952 0.991460 -0.919069 0.266046
  23. 3 -0.709661 1.669052 1.037882 -1.705775
  24. 4 -0.919854 -0.042379 1.247642 -0.009920
  25. 5 0.290213 0.495767 0.362949 1.548106
  26. 6 -1.131345 -0.089329 0.337863 -0.945867
  27. 7 -0.932132 1.956030 0.017587 -0.016692
  28. 8 -0.575247 0.254161 -1.143704 0.215897
  29. 9 1.193555 -0.077118 -0.408530 -0.862495

l Join 类似于SQL类型的合并,具体请参阅:Database style joining

  1. In [77]: left = pd.DataFrame({
  2. 'key': ['foo', 'foo'], 'lval': [1, 2]})
  3. In [78]: right = pd.DataFrame({
  4. 'key': ['foo', 'foo'], 'rval': [4, 5]})
  5. In [79]: left
  6. Out[79]:
  7. key lval
  8. 0 foo 1
  9. 1 foo 2
  10. In [80]: right
  11. Out[80]:
  12. key rval
  13. 0 foo 4
  14. 1 foo 5
  15. In [81]: pd.merge(left, right, on='key')
  16. Out[81]:
  17. key lval rval
  18. 0 foo 1 4
  19. 1 foo 1 5
  20. 2 foo 2 4
  21. 3 foo 2 5

l Append 将一行连接到一个DataFrame上,具体请参阅Appending:

  1. In [82]: left = pd.DataFrame({
  2. 'key': ['foo', 'bar'], 'lval': [1, 2]})
  3. In [83]: right = pd.DataFrame({
  4. 'key': ['foo', 'bar'], 'rval': [4, 5]})
  5. In [84]: left
  6. Out[84]:
  7. key lval
  8. 0 foo 1
  9. 1 bar 2
  10. In [85]: right
  11. Out[85]:
  12. key rval
  13. 0 foo 4
  14. 1 bar 5
  15. In [86]: pd.merge(left, right, on='key')
  16. Out[86]:
  17. key lval rval
  18. 0 foo 1 4
  19. 1 bar 2 5
  20. In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
  21. In [88]: df
  22. Out[88]:
  23. A B C D
  24. 0 1.346061 1.511763 1.627081 -0.990582
  25. 1 -0.441652 1.211526 0.268520 0.024580
  26. 2 -1.577585 0.396823 -0.105381 -0.532532
  27. 3 1.453749 1.208843 -0.080952 -0.264610
  28. 4 -0.727965 -0.589346 0.339969 -0.693205
  29. 5 -0.339355 0.593616 0.884345 1.591431
  30. 6 0.141809 0.220390 0.435589 0.192451
  31. 7 -0.096701 0.803351 1.715071 -0.708758
  32. In [89]: s = df.iloc[3]
  33. In [90]: df.append(s, ignore_index=True)
  34. Out[90]:
  35. A B C D
  36. 0 1.346061 1.511763 1.627081 -0.990582
  37. 1 -0.441652 1.211526 0.268520 0.024580
  38. 2 -1.577585 0.396823 -0.105381 -0.532532
  39. 3 1.453749 1.208843 -0.080952 -0.264610
  40. 4 -0.727965 -0.589346 0.339969 -0.693205
  41. 5 -0.339355 0.593616 0.884345 1.591431
  42. 6 0.141809 0.220390 0.435589 0.192451
  43. 7 -0.096701 0.803351 1.715071 -0.708758
  44. 8 1.453749 1.208843 -0.080952 -0.264610

七、 分组
对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l (Splitting)按照一些规则将数据分为不同的组;

l (Applying)对于每组数据分别执行一个函数;

l (Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

  1. In [91]: df = pd.DataFrame({
  2. 'A' : ['foo', 'bar', 'foo', 'bar',
  3. ....: 'foo', 'bar', 'foo', 'foo'],
  4. ....: 'B' : ['one', 'one', 'two', 'three',
  5. ....: 'two', 'two', 'one', 'three'],
  6. ....: 'C' : np.random.randn(8),
  7. ....: 'D' : np.random.randn(8)})
  8. ....:
  9. In [92]: df
  10. Out[92]:
  11. A B C D
  12. 0 foo one -1.202872 -0.055224
  13. 1 bar one -1.814470 2.395985
  14. 2 foo two 1.018601 1.552825
  15. 3 bar three -0.595447 0.166599
  16. 4 foo two 1.395433 0.047609
  17. 5 bar two -0.392670 -0.136473
  18. 6 foo one 0.007207 -0.561757
  19. 7 foo three 1.928123 -1.623033

1、 分组并对每个分组执行sum函数:

  1. In [93]: df.groupby('A').sum()
  2. Out[93]:
  3. C D
  4. A
  5. bar -2.802588 2.42611
  6. foo 3.146492 -0.63958

2、 通过多个列进行分组形成一个层次索引,然后执行函数:

  1. In [94]: df.groupby(['A','B']).sum()
  2. Out[94]:
  3. C D
  4. A B
  5. bar one -1.814470 2.395985
  6. three -0.595447 0.166599
  7. two -0.392670 -0.136473
  8. foo one -1.195665 -0.616981
  9. three 1.928123 -1.623033
  10. two 2.414034 1.600434

八、 Reshaping
详情请参阅 Hierarchical Indexing 和 Reshaping。

l Stack

  1. In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
  2. ....: 'foo', 'foo', 'qux', 'qux'],
  3. ....: ['one', 'two', 'one', 'two',
  4. ....: 'one', 'two', 'one', 'two']]))
  5. ....:
  6. In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
  7. In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
  8. In [98]: df2 = df[:4]
  9. In [99]: df2
  10. Out[99]:
  11. A B
  12. first second
  13. bar one 0.029399 -0.542108
  14. two 0.282696 -0.087302
  15. baz one -1.575170 1.771208
  16. two 0.816482 1.100230

l 数据透视表,详情请参阅:Pivot Tables.

  1. In [100]: stacked = df2.stack()
  2. In [101]: stacked
  3. Out[101]:
  4. first second
  5. bar one A 0.029399
  6. B -0.542108
  7. two A 0.282696
  8. B -0.087302
  9. baz one A -1.575170
  10. B 1.771208
  11. two A 0.816482
  12. B 1.100230
  13. dtype: float64

可以从这个数据中轻松的生成数据透视表:

  1. In [102]: stacked.unstack()
  2. Out[102]:
  3. A B
  4. first second
  5. bar one 0.029399 -0.542108
  6. two 0.282696 -0.087302
  7. baz one -1.575170 1.771208
  8. two 0.816482 1.100230
  9. In [103]: stacked.unstack(1)
  10. Out[103]:
  11. second one two
  12. first
  13. bar A 0.029399 0.282696
  14. B -0.542108 -0.087302
  15. baz A -1.575170 0.816482
  16. B 1.771208 1.100230
  17. In [104]: stacked.unstack(0)
  18. Out[104]:
  19. first bar baz
  20. second
  21. one A 0.029399 -1.575170
  22. B -0.542108 1.771208
  23. two A 0.282696 0.816482
  24. B -0.087302 1.100230
  25. Pivot Tables
  26. See the section on Pivot Tables.
  27. In [105]: df = pd.DataFrame({
  28. 'A' : ['one', 'one', 'two', 'three'] * 3,
  29. .....: 'B' : ['A', 'B', 'C'] * 4,
  30. .....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
  31. .....: 'D' : np.random.randn(12),
  32. .....: 'E' : np.random.randn(12)})
  33. .....:
  34. In [106]: df
  35. Out[106]:
  36. A B C D E
  37. 0 one A foo 1.418757 -0.179666
  38. 1 one B foo -1.879024 1.291836
  39. 2 two C foo 0.536826 -0.009614
  40. 3 three A bar 1.006160 0.392149
  41. 4 one B bar -0.029716 0.264599
  42. 5 one C bar -1.146178 -0.057409
  43. 6 two A foo 0.100900 -1.425638
  44. 7 three B foo -1.035018 1.024098
  45. 8 one C foo 0.314665 -0.106062
  46. 9 one A bar -0.773723 1.824375
  47. 10 two B bar -1.170653 0.595974
  48. 11 three C bar 0.648740 1.167115
  49. We can produce pivot tables from this data very easily:
  50. In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
  51. Out[107]:
  52. C bar foo
  53. A B
  54. one A -0.773723 1.418757
  55. B -0.029716 -1.879024
  56. C -1.146178 0.314665
  57. three A 1.006160 NaN
  58. B NaN -1.035018
  59. C 0.648740 NaN
  60. two A NaN 0.100900
  61. B -1.170653 NaN
  62. C NaN 0.536826

九、 时间序列
Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section。

  1. In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
  2. In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
  3. In [110]: ts.resample('5Min').sum()
  4. Out[110]:
  5. 2012-01-01 25083
  6. Freq: 5T, dtype: int64

1、 时区表示:

  1. In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
  2. In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)
  3. In [113]: ts
  4. Out[113]:
  5. 2012-03-06 0.464000
  6. 2012-03-07 0.227371
  7. 2012-03-08 -0.496922
  8. 2012-03-09 0.306389
  9. 2012-03-10 -2.290613
  10. Freq: D, dtype: float64
  11. In [114]: ts_utc = ts.tz_localize('UTC')
  12. In [115]: ts_utc
  13. Out[115]:
  14. 2012-03-06 00:00:00+00:00 0.464000
  15. 2012-03-07 00:00:00+00:00 0.227371
  16. 2012-03-08 00:00:00+00:00 -0.496922
  17. 2012-03-09 00:00:00+00:00 0.306389
  18. 2012-03-10 00:00:00+00:00 -2.290613
  19. Freq: D, dtype: float64

2、 时区转换:

  1. In [116]: ts_utc.tz_convert('US/Eastern')
  2. Out[116]:
  3. 2012-03-05 19:00:00-05:00 0.464000
  4. 2012-03-06 19:00:00-05:00 0.227371
  5. 2012-03-07 19:00:00-05:00 -0.496922
  6. 2012-03-08 19:00:00-05:00 0.306389
  7. 2012-03-09 19:00:00-05:00 -2.290613
  8. Freq: D, dtype: float64

3、 时间跨度转换:

  1. In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
  2. In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
  3. In [119]: ts
  4. Out[119]:
  5. 2012-01-31 -1.134623
  6. 2012-02-29 -1.561819
  7. 2012-03-31 -0.260838
  8. 2012-04-30 0.281957
  9. 2012-05-31 1.523962
  10. Freq: M, dtype: float64
  11. In [120]: ps = ts.to_period()
  12. In [121]: ps
  13. Out[121]:
  14. 2012-01 -1.134623
  15. 2012-02 -1.561819
  16. 2012-03 -0.260838
  17. 2012-04 0.281957
  18. 2012-05 1.523962
  19. Freq: M, dtype: float64
  20. In [122]: ps.to_timestamp()
  21. Out[122]:
  22. 2012-01-01 -1.134623
  23. 2012-02-01 -1.561819
  24. 2012-03-01 -0.260838
  25. 2012-04-01 0.281957
  26. 2012-05-01 1.523962
  27. Freq: MS, dtype: float64

4、 时期和时间戳之间的转换使得可以使用一些方便的算术函数。

  1. In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
  2. In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
  3. In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
  4. In [126]: ts.head()
  5. Out[126]:
  6. 1990-03-01 09:00 -0.902937
  7. 1990-06-01 09:00 0.068159
  8. 1990-09-01 09:00 -0.057873
  9. 1990-12-01 09:00 -0.368204
  10. 1991-03-01 09:00 -1.144073
  11. Freq: H, dtype: float64

十、 Categorical
从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introduction和API documentation。

  1. In [127]: df = pd.DataFrame({
  2. "id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

1、 将原始的grade转换为Categorical数据类型:

  1. In [128]: df["grade"] = df["raw_grade"].astype("category")
  2. In [129]: df["grade"]
  3. Out[129]:
  4. 0 a
  5. 1 b
  6. 2 b
  7. 3 a
  8. 4 a
  9. 5 e
  10. Name: grade, dtype: category
  11. Categories (3, object): [a, b, e]

2、 将Categorical类型数据重命名为更有意义的名称:

  1. In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

3、 对类别进行重新排序,增加缺失的类别:

  1. In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
  2. In [132]: df["grade"]
  3. Out[132]:
  4. 0 very good
  5. 1 good
  6. 2 good
  7. 3 very good
  8. 4 very good
  9. 5 very bad
  10. Name: grade, dtype: category
  11. Categories (5, object): [very bad, bad, medium, good, very good]

4、 排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

  1. In [133]: df.sort_values(by="grade")
  2. Out[133]:
  3. id raw_grade grade
  4. 5 6 e very bad
  5. 1 2 b good
  6. 2 3 b good
  7. 0 1 a very good
  8. 3 4 a very good
  9. 4 5 a very good

5、 对Categorical列进行排序时存在空的类别:

  1. In [134]: df.groupby("grade").size()
  2. Out[134]:
  3. grade
  4. very bad 1
  5. bad 0
  6. medium 0
  7. good 2
  8. very good 3
  9. dtype: int64

十一、 画图
具体文档参看:Plotting docs

  1. In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
  2. In [136]: ts = ts.cumsum()
  3. In [137]: ts.plot()
  4. Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1187d7278>

这里写图片描述
对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

  1. In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
  2. .....: columns=['A', 'B', 'C', 'D'])
  3. .....:
  4. In [139]: df = df.cumsum()
  5. In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
  6. Out[140]: <matplotlib.legend.Legend at 0x11b5dea20>

这里写图片描述

十二、 导入和保存数据
l CSV,参考:Writing to a csv file

1、 写入csv文件:

  1. In [141]: df.to_csv('foo.csv')

2、 从csv文件中读取:

  1. In [142]: pd.read_csv('foo.csv')
  2. Out[142]:
  3. Unnamed: 0 A B C D
  4. 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. .. ... ... ... ... ...
  12. 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 5 columns]

l HDF5,参考:HDFStores

1、 写入HDF5存储:

  1. In [143]: df.to_hdf('foo.h5','df')

2、 从HDF5存储中读取:

  1. In [144]: pd.read_hdf('foo.h5','df')
  2. Out[144]:
  3. A B C D
  4. 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. ... ... ... ... ...
  12. 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 4 columns]

l Excel,参考:MS Excel

1、 写入excel文件:

  1. In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

2、 从excel文件中读取:

  1. In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
  2. Out[146]:
  3. A B C D
  4. 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
  5. 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
  6. 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
  7. 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
  8. 2000-01-05 0.578117 0.511371 0.103552 -2.428202
  9. 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
  10. 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
  11. ... ... ... ... ...
  12. 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
  13. 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
  14. 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
  15. 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
  16. 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
  17. 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
  18. 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
  19. [1000 rows x 4 columns]

发表评论

表情:
评论列表 (有 0 条评论,303人围观)

还没有评论,来说两句吧...

相关阅读

    相关 5分钟android混淆

    前言 混淆是上线前挺重要的一个环节。android使用的ProGuard,可以起到压缩,混淆,预检,优化的作用。但是很多童鞋还没有掌握正确的写混淆文件的姿势。我希望搞个模