并发编程之重入锁和读写锁
Java多线程中,除了sychronized关键字实现多线程之间同步互斥操作,其实还有另外一种高效的机制去完成“同步互斥”操作。即Lock对象,比synchronized关键字更为强大功能,并且有嗅探锁定,多路分支等功能。
重入锁
分为公平锁和非公平锁,默认非公平锁
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
private Lock lock = new ReentrantLock();
public void method1(){
try {
//加锁
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method1..");
Thread.sleep(1000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method1..");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
//一定要释放锁,否则其他线程拥有无法获取
lock.unlock();
}
}
以前使用synchronized 关键字进行多线程协同工作时,需要使用Object的wait()阻塞、释放锁,notify()唤醒、不释放锁等进行配合使用。
使用Lock时可以使用新的等待/通知类,Condition一定是针对某一把固定的锁,也就是说,只有在有锁的基础上才会产生Condition。
public class UseCondition {
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
public void method1(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入等待状态..");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "释放锁..");
// 释放锁,类似于Object.wait(),阻塞于此
condition.await();
System.out.println("当前线程:" + Thread.currentThread().getName() +"继续执行...");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void method2(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "发出唤醒..");
// 不释放锁类,似于Object.notify()
condition.signal();
System.out.println("当前线程:" + Thread.currentThread().getName() + "没有释放锁");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
final UseCondition uc = new UseCondition();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
uc.method1();
}
}, "t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
uc.method2();
}
}, "t2");
t1.start();
t2.start();
}
}
结果:
读写锁
核心思想实现读写分离,高并发下特别适合读多写少的场景。
之前的synchronized
关键字和ReentrantLock
同一时间只能有一个线程进行访问被锁定的代码,读写锁的机制则不是,本质上分为两把锁,读锁和写锁,在读锁情况下,多个线程可以并发访问资源,只有当是写锁时,只能一个一个的顺序执行。
口诀:读读共享,写写互斥,读写互斥。
public class UseReentrantReadWriteLock {
private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
private ReentrantReadWriteLock.ReadLock readLock = rwLock.readLock();
private ReentrantReadWriteLock.WriteLock writeLock = rwLock.writeLock();
public void read() {
try {
readLock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
} catch (Exception e) {
e.printStackTrace();
} finally {
readLock.unlock();
}
}
public void write() {
try {
writeLock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
} catch (Exception e) {
e.printStackTrace();
} finally {
writeLock.unlock();
}
}
public static void main(String[] args) {
final UseReentrantReadWriteLock urrw = new UseReentrantReadWriteLock();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
urrw.read();
}
}, "t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
urrw.read();
}
}, "t2");
Thread t3 = new Thread(new Runnable() {
@Override
public void run() {
urrw.write();
}
}, "t3");
Thread t4 = new Thread(new Runnable() {
@Override
public void run() {
urrw.write();
}
}, "t4");
t1.start(); // R
t2.start(); // R
// t1.start(); // R
// t3.start(); // W
t3.start(); // W
t4.start(); // W
}
}
结果:
还没有评论,来说两句吧...