keras-人脸关键点检测

淡淡的烟草味﹌ 2021-11-17 08:48 411阅读 0赞
  1. # -*- coding: utf-8 -*-
  2. """
  3. Created on 2019/5/21 10:46
  4. @Author: Johnson
  5. @Email:593956670@qq.com
  6. @File: keras_人脸关键点检测.py
  7. """
  8. from tensorflow.contrib.keras.api.keras.preprocessing.image import ImageDataGenerator,img_to_array
  9. from keras.models import Sequential
  10. from keras.layers.core import Dense, Dropout, Activation, Flatten
  11. from keras.layers.advanced_activations import PReLU
  12. from keras.layers.convolutional import Conv2D, MaxPooling2D,ZeroPadding2D
  13. from keras.preprocessing.image import load_img, img_to_array
  14. from keras.optimizers import SGD
  15. import numpy as np
  16. import cv2
  17. from keras.callbacks import *
  18. import keras
  19. file_path = 'cnn_model_final.h5'
  20. train_path = 'D:/BaiduNetdiskDownload/new_data_50000/50000train/'
  21. test_path = 'D:/BaiduNetdiskDownload/new_data_50000/50000test/'
  22. imgsize = 178
  23. train_samples = 40000
  24. test_samples = 200
  25. batch_size = 32
  26. def data_label(path):
  27. f = open(path+"lable-40.txt","r")
  28. j = 0
  29. i = -1
  30. datalist = []
  31. labellist = []
  32. while True:
  33. for line in f.readlines():
  34. i+=1
  35. j+=1
  36. a = line.replace("\n","")
  37. b = a.split(",")
  38. label = b[1:]
  39. #对标签进行归一化处理(不归一化也行)
  40. for num in b[1:]:
  41. lab = int(num)/255.0
  42. labellist.append(lab)
  43. lab = labellist[i*10:j*10]
  44. imgname = path+b[0]
  45. images = load_img(imgname)
  46. images = img_to_array(images).astype("float32")
  47. #对图片进行归一化
  48. images/=255.0
  49. image = np.expand_dims(images,axis=0) #
  50. labels = np.array(label)
  51. # label = keras.utils.np_utils.to_categorical(label)
  52. # label = np.expand_dims(label,axis=0)
  53. label = labels.reshape(1,10)
  54. yield (image,label)
  55. ######
  56. #开始建立CNN模型
  57. ######
  58. class Model():
  59. def __CNN__(self):
  60. model = Sequential() #218*178*3
  61. model.add(Conv2D(32,(3,3),input_shape=(imgsize,imgsize,3)))
  62. model.add(Activation('relu'))
  63. model.add(MaxPooling2D(pool_size=(2,2)))
  64. model.add(Conv2D(32, (3, 3)))
  65. model.add(Activation('relu'))
  66. model.add(MaxPooling2D(pool_size=(2, 2)))
  67. model.add(Conv2D(64, (3, 3)))
  68. model.add(Activation('relu'))
  69. model.add(MaxPooling2D(pool_size=(2, 2)))
  70. model.add(Flatten())
  71. model.add(Dense(64))
  72. model.add(Activation('relu'))
  73. model.add(Dropout(0.5))
  74. model.add(Dense(10))
  75. model.summary()
  76. return model
  77. def train(self,model):
  78. model = Sequential() # 218*178*3
  79. model.add(Conv2D(32, (3, 3), input_shape=(imgsize, imgsize, 3)))
  80. model.add(Activation('relu'))
  81. model.add(MaxPooling2D(pool_size=(2, 2)))
  82. model.add(Conv2D(32, (3, 3)))
  83. model.add(Activation('relu'))
  84. model.add(MaxPooling2D(pool_size=(2, 2)))
  85. model.add(Conv2D(64, (3, 3)))
  86. model.add(Activation('relu'))
  87. model.add(MaxPooling2D(pool_size=(2, 2)))
  88. model.add(Flatten())
  89. model.add(Dense(64))
  90. model.add(Activation('relu'))
  91. model.add(Dropout(0.5))
  92. model.add(Dense(10))
  93. model.summary()
  94. # optimizer = SGD(lr=0.03,momentum=0.9,nesterov=True)
  95. model.compile(loss="mse",optimizer="adam",metrics=["accuracy"])
  96. epoch_num = 10
  97. learning_rate = np.linspace(0.03,0.01,epoch_num)
  98. change_lr = LearningRateScheduler(lambda epoch:float(learning_rate[epoch]))
  99. early_stop = EarlyStopping(monitor="val_liss",patience=20,verbose=1,mode='auto')
  100. check_point = ModelCheckpoint('CNN_model_final.h5', monitor='val_loss', verbose=0, save_best_only=True,
  101. save_weights_only=False, mode='auto', period=1)
  102. model.fit_generator(data_label(train_path), callbacks=[check_point, early_stop, change_lr],
  103. samples_per_epoch=int(train_samples // batch_size),
  104. epochs = epoch_num, validation_steps = int(test_samples // batch_size), validation_data = data_label(
  105. test_path))
  106. # model.fit(traindata,trainlabel,batch_size=32,epoch=50,validation_data=(testdata,testlabel))
  107. model.evaluate_generator(data_label(test_path))
  108. def save(self,model,file_path=file_path):
  109. print("Model saved...")
  110. model.save_weights(file_path)
  111. def load(self,model,file_path=file_path):
  112. print("Model loaded...")
  113. model.load_weigths(file_path)
  114. def predict(self,model,image):
  115. #预测样本分类
  116. print(image.shape)
  117. image = cv2.resize(image,(imgsize,imgsize))
  118. image.astype('float32')
  119. image = np.expand_dims(image,axis=0)
  120. #归一化
  121. result = model.predict(image)
  122. print(result)
  123. return result
  124. #模型测试代码
  125. t = Model()
  126. model = t.__CNN__()
  127. t.train(model)

发表评论

表情:
评论列表 (有 0 条评论,411人围观)

还没有评论,来说两句吧...

相关阅读

    相关 Python实现人脸关键检测

    Python实现人脸关键点检测 人脸关键点是人脸识别、表情识别、虚拟化妆等应用的基础。本文将介绍如何使用Python实现人脸关键点检测。 首先,我们需要安装dlib和Ope

    相关 人脸关键检测总结

    概述 人脸关键点检测也称为人脸关键点检测、定位或者人脸对齐,是指给定人脸图像,定位出人脸面部的关键区域位置,包括眉毛、眼睛、鼻子、嘴巴、脸部轮廓等。 人脸关键点检测方法