Pytorch 多 GPU 并行处理机制

向右看齐 2021-10-29 13:54 355阅读 0赞

Pytorch 的多 GPU 处理接口是 torch.nn.DataParallel(module, device_ids),其中 module 参数是所要执行的模型,而 device_ids 则是指定并行的 GPU id 列表。

而其并行处理机制是,首先将模型加载到主 GPU 上,然后再将模型复制到各个指定的从 GPU 中,然后将输入数据按 batch 维度进行划分,具体来说就是每个 GPU 分配到的数据 batch 数量是总输入数据的 batch 除以指定 GPU 个数。每个 GPU 将针对各自的输入数据独立进行 forward 计算,最后将各个 GPU 的 loss 进行求和,再用反向传播更新单个 GPU 上的模型参数,再将更新后的模型参数复制到剩余指定的 GPU 中,这样就完成了一次迭代计算。所以该接口还要求输入数据的 batch 数量要不小于所指定的 GPU 数量。

![Image 1][]

这里有两点需要注意:

  1. 主 GPU 默认情况下是 0 号 GPU,也可以通过 torch.cuda.set_device(id) 来手动更改默认 GPU。
  2. 提供的多 GPU 并行列表中需要包含有主 GPU。

作者:叶俊贤
链接:https://www.jianshu.com/p/9e36e5e36638
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

转载于:https://www.cnblogs.com/jfdwd/p/11197897.html

[Image 1]:

发表评论

表情:
评论列表 (有 0 条评论,355人围观)

还没有评论,来说两句吧...

相关阅读

    相关 PytorchGPU训练指北

    前言 在数据越来越多的时代,随着模型规模参数的增多,以及数据量的不断提升,使用多GPU去训练是不可避免的事情。Pytorch在0.4.0及以后的版本中已经提供了多GPU训