Pytorch - GPU ID 指定 pytorch gpu 指定

谁践踏了优雅 2023-06-04 15:59 128阅读 0赞

PyTorch 关于多 GPUs 时的指定使用特定 GPU.

PyTorch 中的 Tensor,Variable 和 nn.Module(如 loss,layer和容器 Sequential) 等可以分别使用 CPU 和 GPU 版本,均是采用 .cuda() 方法.

如:

  1. import torch a = torch.Tensor(2, 3) if torch.cuda.is_available(): # 判断是否支持 CUDA a.is_cuda # False a = a.cuda() # 放到 GPU 上 a.is_cuda # True a.get_device() # 默认使用 GPU-0

采用 .cuda() 方法默认使用的是 GPU-0,等价于 .cuda(0).

1. GPU ID 指定

当需要指定使用多张 GPUs 中的特定 GPU 时,可以采用 .cuda(1) 方法,但需要对大量的 Tensor、Variable等进行修改.

参考网络上的方法,替代方案主要有:

[1] - 使用 torch.cuda.set_device(id) 函数

  1. import torch torch.cuda.set_device(id) # id=0, 1, 2 等

[2] - 采用类似 Tensorflow 指定 GPU 的方式,使用 CUDA_VISIBLE_DEVICES

  1. # 使用终端命令行运行的 GPU 指定方式 CUDA_VISIBLE_DEVICES=1 python python_script.py
  2. # 在 python 脚本中的 GPU 指定方式 import os os.environ["CUDA_VISIBLE_DEVICES"] = "2"

参考:PyTorch中使用指定的GPU

2. torch.device

如:

  1. import torch device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") a_cpu = torch.Tensor(2, 3) # tensor([[0.0000e+00, 0.0000e+00, 1.2771e-40], # [9.0079e+15, 1.6751e-37, 2.9775e-41]]) a_cpu.device # device(type='cpu') a_cuda = a.to(device) # tensor([[-2.1800e-01, 4.5737e-41, 2.3351e-37], # [ 0.0000e+00, 4.4842e-44, 0.0000e+00]], device='cuda:0') a_cuda.device # device(type='cuda', index=0) # 查看当前 gpu id curr_gpuid = torch.cuda.current_device() # 0

1432127-20190830121114142-1827886879.jpg

转载于:https://www.cnblogs.com/jfdwd/p/11434332.html

发表评论

表情:
评论列表 (有 0 条评论,128人围观)

还没有评论,来说两句吧...

相关阅读

    相关 PyTorch_GPU加速测试

    初步学校pytorch,初步了解gpu 怎样利用gpu 进行运算,参考网上的资料。现在还有有问题,第一次采用计算慢怎样优化的问题。以后学习解决。 import tor