协同过滤推荐算法
1.思想简介:
协同过滤,从字面上理解,包括协同和过滤两个操作。所谓协同就是利用群体的行为来做决策(推荐)。对于推荐系统来说,通过用户的持续协同作用,最终给用户的推荐会越来越准。而过滤,就是从可行的决策(推荐)方案(标的物)中将用户喜欢的方案(标的物)找(过滤)出来。协同过滤分为基于用户的协同过滤和基于标的物(物品)的协同过滤两类算法。
基于协同过滤的两种推荐算法,核心思想是很朴素的”物以类聚、人以群分“的思想。所谓物以类聚,就是计算出每个标的物最相似的标的物列表,我们就可以为用户推荐用户喜欢的标的物相似的标的物,这就是基于物品(标的物)的协同过滤。所谓人以群分,就是我们可以将与该用户相似的用户喜欢过的标的物的标的物推荐给该用户(而该用户未曾操作过),这就是基于用户的协同过滤。
基于协同过滤的两种推荐算法,核心思想是很朴素的”物以类聚、人以群分“的思想。所谓物以类聚,就是计算出每个标的物最相似的标的物列表,我们就可以为用户推荐用户喜欢的标的物相似的标的物,这就是基于物品(标的物)的协同过滤。所谓人以群分,就是我们可以将与该用户相似的用户喜欢过的标的物的标的物推荐给该用户(而该用户未曾操作过),这就是基于用户的协同过滤。具体思想可以参考下面的图
2.算法原理
协同过滤的核心是怎么计算标的物之间的相似度以及用户之间的相似度
还没有评论,来说两句吧...