Collaborative Filtering协同过滤推荐算法
from math import sqrt
dataset={
'Lisa Rose': {'Lady in the Water': 2.5,
'Snakes on a Plane': 3.5,
'Just My Luck': 3.0,
'Superman Returns': 3.5,
'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0,
'Snakes on a Plane': 3.5,
'Just My Luck': 1.5,
'Superman Returns': 5.0,
'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5,
'Snakes on a Plane': 3.0,
'Superman Returns': 3.5,
'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5,
'Just My Luck': 3.0,
'The Night Listener': 4.5,
'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0,
'Snakes on a Plane': 4.0,
'Just My Luck': 2.0,
'Superman Returns': 3.0,
'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0,
'Snakes on a Plane': 4.0,
'The Night Listener': 3.0,
'Superman Returns': 5.0,
'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,
'You, Me and Dupree':1.0,
'Superman Returns':4.0}}
def similarity_score(person1,person2):
# Returns ratio Euclidean distance score of person1 and person2
both_viewed = {} # To get both rated items by person1 and person2
for item in dataset[person1]:
if item in dataset[person2]:
both_viewed[item] = 1
# Conditions to check they both have an common rating items
if len(both_viewed) == 0:
return 0
# Finding Euclidean distance
sum_of_eclidean_distance = []
for item in dataset[person1]:
if item in dataset[person2]:
sum_of_eclidean_distance.append(pow(dataset[person1][item] - dataset[person2][item],2))
sum_of_eclidean_distance = sum(sum_of_eclidean_distance)
return 1/(1+sqrt(sum_of_eclidean_distance))
def pearson_correlation(person1,person2):
# To get both rated items
both_rated = {}
for item in dataset[person1]:
if item in dataset[person2]:
both_rated[item] = 1
number_of_ratings = len(both_rated)
# Checking for number of ratings in common
if number_of_ratings == 0:
return 0
# Add up all the preferences of each user
person1_preferences_sum = sum([dataset[person1][item] for item in both_rated])
person2_preferences_sum = sum([dataset[person2][item] for item in both_rated])
# Sum up the squares of preferences of each user
person1_square_preferences_sum = sum([pow(dataset[person1][item],2) for item in both_rated])
person2_square_preferences_sum = sum([pow(dataset[person2][item],2) for item in both_rated])
# Sum up the product value of both preferences for each item
product_sum_of_both_users = sum([dataset[person1][item] * dataset[person2][item] for item in both_rated])
# Calculate the pearson score
numerator_value = product_sum_of_both_users - (person1_preferences_sum*person2_preferences_sum/number_of_ratings)
denominator_value = sqrt((person1_square_preferences_sum - pow(person1_preferences_sum,2)/number_of_ratings) * (person2_square_preferences_sum -pow(person2_preferences_sum,2)/number_of_ratings))
if denominator_value == 0:
return 0
else:
r = numerator_value/denominator_value
return r
def most_similar_users(person,number_of_users):
# returns the number_of_users (similar persons) for a given specific person.
scores = [(pearson_correlation(person,other_person),other_person) for other_person in dataset if other_person != person ]
# Sort the similar persons so that highest scores person will appear at the first
scores.sort()
scores.reverse()
return scores[0:number_of_users]
def user_reommendations(person):
# Gets recommendations for a person by using a weighted average of every other user's rankings
totals = {}
simSums = {}
rankings_list =[]
for other in dataset:
# don't compare me to myself
if other == person:
continue
sim = pearson_correlation(person,other)
#print ">>>>>>>",sim
# ignore scores of zero or lower
if sim <=0:
continue
for item in dataset[other]:
# only score movies i haven't seen yet
if item not in dataset[person] or dataset[person][item] == 0:
# Similrity * score
totals.setdefault(item,0)
totals[item] += dataset[other][item]* sim
# sum of similarities
simSums.setdefault(item,0)
simSums[item]+= sim
# Create the normalized list
rankings = [(total/simSums[item],item) for item,total in totals.items()]
rankings.sort()
rankings.reverse()
# returns the recommended items
recommendataions_list = [recommend_item for score,recommend_item in rankings]
return recommendataions_list
print user_reommendations('Toby')
探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法 - 协同过滤
探索推荐引擎内部的秘密,第 3 部分: 深入推荐引擎相关算法 - 聚类
memory-based 协同过滤(CF)方法
推荐方法总结
机器学习相关——协同过滤
Collaborative filtering 学习总结
如何利用用户标签数据
基于标签的推荐系统
基于用户的最近邻推荐
还没有评论,来说两句吧...