发表评论取消回复
相关阅读
相关 样本不平衡【①、利用SMOTE算法合成新的少数类样本】
SMOTE算法(Synthetic Minority Oversampling Technique) :[Python库:imbalanced-learn 0.9.0][Pyt
相关 类别不平衡问题之SMOTE算法(Python imblearn极简实现)
类别不平衡问题 类别不平衡问题,顾名思义,即数据集中存在某一类样本,其数量远多于或远少于其他类样本,从而导致一些机器学习模型失效的问题。例如逻辑回归即不适合处理
相关 样本不均衡及其解决办法
1 什么是类别不均衡 类别不平衡(class-imbalance),也叫数据倾斜,数据不平衡,是指分类任务中不同类别的训练样例数目差别很大的情况。 在现实的分类学习任务
相关 python生成opencv正样本和负样本描述文件
使用时更改rootdir即可,即修改文件路径即可,文件路径为你的正样本保存的目录或者负样本保存的目录,以下为正样本`pos.dat`生成的程序: 注意:为了保证不出错,在生
相关 正负样本不均衡的解决办法
机器学习中,最重要的一个过程就是模型训练,但是在做模型训练之前需要对数据进行预处理也就是常见的数据清洗和特征工程。 数据清洗过程中,比较重要的一步就是查看正负样本是否均衡。
相关 样本不平衡 分类 难分样本 hard example OHEM
样本不平衡问题 如在二分类中正负样本比例存在较大差距,导致模型的预测偏向某一类别。如果正样本占据1%,而负样本占据99%,那么模型只需要对所有样本输出预测为负样本,那
相关 训练样本集的制作
在进行机器学习时,根据处理问题的不同,所需要的训练样本不同,并不是所有的训练样本都可以在网络上搜索到,所有,有时需要根据自己要解决的问题的实际需要,制作自己的样本数据集。 m
还没有评论,来说两句吧...