发表评论取消回复
相关阅读
相关 多分类样本类别分布不均衡-解决方案-损失函数(二):Long-Tail Learning via Logit Adjustment
利用深度学习做多分类在工业或是在科研环境中都是常见的任务。在科研环境下,无论是NLP、CV或是TTS系列任务,数据都是丰富且干净的。而在现实的工业环境中,数据问题常常成为困扰从
相关 机器学习超详细实践攻略(23):三板斧干掉样本不均衡问题之3——通过集成学习方法解决样本不均衡
![在这里插入图片描述][20200128211341983.png] 一、原理 本文是处理样本不均衡的第三种方法。思路也很简单:从样本量比较多的类别中随机抽取一定数量
相关 样本不均衡及其解决办法
1 什么是类别不均衡 类别不平衡(class-imbalance),也叫数据倾斜,数据不平衡,是指分类任务中不同类别的训练样例数目差别很大的情况。 在现实的分类学习任务
相关 使用python实现对样本的分层均衡抽样
前言 文章来源:CSDN@LawsonAbs 代码见我Github -------------------- 1. 需求 在深度学习中,我们时常会碰
相关 touchEnd 不执行解决办法
场景: vue环境,在组件监听 touchEnd 用户触摸滑动结束事件,在安卓端手机用户滑动结束后没有执行 touchEnd 的事件 解决办法: 在 滑动过程中的事件 t
相关 为什么ROC曲线不受样本不均衡问题的影响
在对分类模型的评价标准中,除了常用的错误率,精确率,召回率和F1度量外,还有两类曲线:ROC曲线和PR曲线,它们都是基于混淆矩阵,在不同分类阈值下两个重要量的关系曲线。 在二
相关 正负样本不均衡的解决办法
机器学习中,最重要的一个过程就是模型训练,但是在做模型训练之前需要对数据进行预处理也就是常见的数据清洗和特征工程。 数据清洗过程中,比较重要的一步就是查看正负样本是否均衡。
相关 机器学习:不均衡样本情况下的抽样
题目 在分类问题中,我们经常会遇到正负样本数据量不等的情况,比如正样本为10w条数据,负样本只有1w条数据,以下最合适的处理方法是( )(多选) A. 将负样本重复10
相关 人脸检測流程及正负样本下载
人脸检測做训练当然能够用OpenCV训练好的xml。可是岂止于此。我们也要动手做! ~ 首先是样本的选取。 样本的选取非常重要。找了非常久才发现几个靠谱的。
相关 类别不均衡处理办法总结
对于深度学习而言,数据量不平衡是很常见的问题,如:工厂的产品缺陷率一般在 0.1% 左右,患者病例比较少等。最近遇到个项目,样本类别极其不均衡,多的类别有上万张,少的仅有
还没有评论,来说两句吧...