发表评论取消回复
相关阅读
相关 matlab绘制roc曲线,手把手画ROC曲线
假设现在有一个二分类问题,先引入两个概念:真正例率(TPR):正例中预测为正例的比例 假正例率(FPR):反例中预测为正例的比例 再假设样本数为6,现在有一个分类器1,它对
相关 js倒计时刷新页面不受影响
转自:[https://blog.csdn.net/gqzydh/article/details/102797669][https_blog.csdn.net_gqzydh_a
相关 样本不均衡及其解决办法
1 什么是类别不均衡 类别不平衡(class-imbalance),也叫数据倾斜,数据不平衡,是指分类任务中不同类别的训练样例数目差别很大的情况。 在现实的分类学习任务
相关 ROC曲线详解
最近学习遇到这个概念,看了半天总算明白了这个曲线的意义。 —————————————————————————————————分割线 1 ROC曲线的概念 受试者工作特征曲
相关 为什么ROC曲线不受样本不均衡问题的影响
在对分类模型的评价标准中,除了常用的错误率,精确率,召回率和F1度量外,还有两类曲线:ROC曲线和PR曲线,它们都是基于混淆矩阵,在不同分类阈值下两个重要量的关系曲线。 在二
相关 正负样本不均衡的解决办法
机器学习中,最重要的一个过程就是模型训练,但是在做模型训练之前需要对数据进行预处理也就是常见的数据清洗和特征工程。 数据清洗过程中,比较重要的一步就是查看正负样本是否均衡。
相关 ROC、AUC曲线
一 roc曲线 1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。 横轴:
相关 机器学习:不均衡样本情况下的抽样
题目 在分类问题中,我们经常会遇到正负样本数据量不等的情况,比如正样本为10w条数据,负样本只有1w条数据,以下最合适的处理方法是( )(多选) A. 将负样本重复10
相关 Roc曲线、AUC
1 概述 AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准。这样的标准其实有很多,例如:大约10年前在machine lear
还没有评论,来说两句吧...