发表评论取消回复
相关阅读
相关 【机器学习】机器学习基础
一、机器学习概述 1、机器学习算法的判别依据 —— 数据类型 1. 离散型数据:由记录不同类别个体的数目所得到的数据,又称计数数据,所有这些数据全部都是整数,而且
相关 机器学习的误差包含偏差和方差
目录 1 Bias(偏差)、Error(误差)、Variance(方差) 2 \[判断模型是过拟合还是欠拟合--学习曲线\](https://www.cnbl
相关 机器学习和数据挖掘(4):噪声与误差
噪声与误差 噪音(Noise) 实际应用中的数据基本都是有干扰的,还是用信用卡发放问题举例子: ![141331_L9Tb_1047422.png][] 噪声产
相关 机器学习实战——机器学习基础
1. 机器学习用到了统计学知识 2. 机器学习就是把无序的数据转换成有用的信息 3. 如何从数据集中选取特征? 通常的做法是测量所有可测属性,而后再挑出重要部
相关 机器学习(经验误差与过拟合)
1.误差:是学习器的实际预测输出与样本的真实输出之间的差异。 比如一组数据 1,2,4,5.使用临界值3,将其分为两类。假设学习器的分类结果为 1和 2,4, 5 。但是实际
相关 机器学习实记(三)模型误差的来源
一.写在前面 本节所讲的内容主要是讨论如何进一步提高通过机器学习获得fbest的准确度使其更进一步接近ftrue,为了解决这个问题我们必须先明确我们学习得到的fbe
还没有评论,来说两句吧...