Tensorflow快速入门——线性回归

分手后的思念是犯贱 2023-06-27 04:29 20阅读 0赞

Tensorflow快速入门二

线性回归

  • 运用Tensorflow进行线性回归

    —*coding—:utf-8

    import tensorflow as tf
    import numpy
    import matplotlib.pyplot as plt
    rng = numpy.random

参数设定

  1. learning_rate = 0.01
  2. training_epochs = 10000
  3. display_step = 50

训练数据

  1. train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
  2. 7.042,10.791,5.313,7.997,5.654,9.27,3.1])
  3. train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
  4. 2.827,3.465,1.65,2.904,2.42,2.94,1.3])
  5. n_samples = train_X.shape[0]
  6. print( "train_X:",train_X)
  7. print( "train_Y:",train_Y)

train_X: [ 3.3 4.4 5.5 6.71 6.93 4.168 9.779 6.182 7.59 2.167
7.042 10.791 5.313 7.997 5.654 9.27 3.1 ]
train_Y: [1.7 2.76 2.09 3.19 1.694 1.573 3.366 2.596 2.53 1.221 2.827 3.465
1.65 2.904 2.42 2.94 1.3 ]

设置placeholder

  1. X = tf.placeholder("float")
  2. Y = tf.placeholder("float")

设置模型的权重和偏置

  1. W = tf.Variable(rng.randn(), name="weight")
  2. b = tf.Variable(rng.randn(), name="bias")

设置线性回归的方程

  1. pred = tf.add(tf.multiply(X, W), b)

设置cost为均方差

  1. cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

梯度下降

  • 注意,minimize() 可以自动修正w和b,因为默认设置Variables的trainable=True

    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

初始化所有variables

  1. init = tf.global_variables_initializer()

开始训练

  1. with tf.Session() as sess:
  2. sess.run(init)
  3. # 灌入所有训练数据
  4. for epoch in range(training_epochs):
  5. for (x, y) in zip(train_X, train_Y):
  6. sess.run(optimizer, feed_dict={ X: x, Y: y})
  7. # 打印出每次迭代的log日志
  8. if (epoch+1) % display_step == 0:
  9. c = sess.run(cost, feed_dict={ X: train_X, Y:train_Y})
  10. print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
  11. "W=", sess.run(W), "b=", sess.run(b))
  12. print("Optimization Finished!")
  13. training_cost = sess.run(cost, feed_dict={ X: train_X, Y: train_Y})
  14. print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
  15. # 作图
  16. plt.plot(train_X, train_Y, 'ro', label='Original data')
  17. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  18. plt.legend()
  19. plt.show()
  20. # 测试样本
  21. test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
  22. test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
  23. print("Testing... (Mean square loss Comparison)")
  24. testing_cost = sess.run(
  25. tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
  26. feed_dict={ X: test_X, Y: test_Y}) # same function as cost above
  27. print("Testing cost=", testing_cost)
  28. print("Absolute mean square loss difference:", abs(
  29. training_cost - testing_cost))
  30. plt.plot(test_X, test_Y, 'bo', label='Testing data')
  31. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  32. plt.legend()
  33. plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

发表评论

表情:
评论列表 (有 0 条评论,20人围观)

还没有评论,来说两句吧...

相关阅读