深入理解Java虚拟机(五):内存回收方法论——垃圾收集算法

桃扇骨 2023-02-17 02:20 78阅读 0赞

引言

从如何判定对象消亡的角度出发,垃圾收集算法可以划分为“引用计数式垃圾收集”(Reference Counting GC)和“追踪式垃圾收集”(Tracing GC)两大类,这两类也常被称作“直接垃圾收集”和“间接垃圾收集”。下面总结的算法均属于追踪式垃圾收集的范畴。

名词解释

  • 部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:

    1)新生代收集(Minor GC/Young GC):指目标只是新生代的垃圾收集。

    2)老年代收集(Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有CMS收集器会有单独收集老年代的行为。

    3)混合收集(Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收集器会有这种行为。

  • 整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。

收集算法

标记-清除算法

1)两个阶段:

首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。

2)两个缺点:

第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低。

第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

3)算法示意图:

在这里插入图片描述
标记-复制算法

1)提出目的:

标记-复制算法常被简称为复制算法。为了解决标记-清除算法面对大量可回收对象时执行效率低的问题。

2)算法方案:

它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

3)两种情况:

第一种:如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销。

第二种:如果多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。

4)优缺点:

实现简单,运行高效。这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费太多。现在的商用Java虚拟机大多都优先采用了这种收集算法去回收新生代。

5)算法示意图:
在这里插入图片描述
半区复制分代策略

1)提出背景:

针对新生代“朝生夕灭”的特点,Andrew Appel提出了一种更优化的半区复制分代策略,现在称为“Appel式回收”。

HotSpot虚拟机的Serial、ParNew等新生代收集器均采用了这种策略来设计新生代的内存布局。

2)算法方案:

把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。

发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。

HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%),只有一个Survivor空间,即10%的新生代是会被“浪费”的。

3)分配担保:

当然,任何人都没有办法百分百保证每次回收都只有不多于10%的对象存活,因此Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。

内存中的分配担保也就是说,如果另外一块Survivor空间没有足够空间存放上一次新生代收集下来的存活对象,这些对象便将通过分配担保机制直接进入老年代,这对虚拟机来说就是安全的。

标记-整理算法

1)提出背景:

标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

2)算法方案:

针对老年代对象的存亡特征,1974年Edward Lueders提出了另外一种有针对性的“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。

3)算法示意图:
在这里插入图片描述
4)算法对比:

标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。

优缺点:

第一种:如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行,称之为“Stop The World”.

第二种:如果跟标记-清除算法那样完全不考虑移动和整理存活对象的话,弥散于堆中的存活对象导致的空间碎片化问题就只能依赖更为复杂的内存分配器和内存访问器来解决。内存的访问是用户程序最频繁的操作,假如在这个环节上增加了额外的负担,势必会直接影响应用程序的吞吐量。

基于以上两点,是否移动对象都存在弊端,移动则内存回收时会更复杂,不移动则内存分配时会更复杂。从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。

HotSpot虚拟机里面关注吞吐量的Parallel Scavenge收集器是基于标记-整理算法的,而关注延迟的CMS收集器则是基于标记-清除算法的。

最后,还有一种两者结合式的方案,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。基于标记-清除算法的CMS收集器面临空间碎片过多时采用的就是这种处理办法。

发表评论

表情:
评论列表 (有 0 条评论,78人围观)

还没有评论,来说两句吧...

相关阅读

    相关 Java虚拟垃圾回收收集算法

    一、概述 Java虚拟机的内存区域中,程序计数器、虚拟机栈和本地方法栈三个区域是线程私有的,随线程生而生,随线程灭而灭;栈中的栈帧随着方法的进入和退出而进行入栈和出栈操作,