[原创]-Day5.数据可视化之Pyecharts
Pyecharts
我们对matplotlib和seaborn都有了一定的了解,并且可以绘制一系列图形。今天我们将讲几个关于pycharts的具体的案例,让大家对可视化有更深的了解。
0、安装
#安装
pip install pyecharts
引入报错
解决方案:
(如果是安装失败的情况的话,安装如下方式重新安装)
#卸载
pip uninstall pycharts
#方案1:安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts
#方案2:
#去官网下载:
https://pypi.org/project/pyecharts/0.1.9.4/#files
#把下载下来的whl文件放在相映路径下,接着在改路径下执行cmd。
#使用
pip install pyecharts-0.1.9.4-py2.py3-none-any.whl
# 报错
init() got an unexpected keyword argument ‘title_color’
# 原因版本太新了没有安装拓展库 所以这里用老版本演示
pip uninstall pyecharts
#安装指定版本
pip install pyecharts==0.5.0
# 地图库安装
pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg
pip install echarts-china-counties-pypkg
pip install echarts-china-misc-pypkg
pip install echarts-united-kingdom-pypkg
1、地理坐标图
#报错找不到 是因为 新版本更改了引入方式
from pyecharts import Geo
#新版本引入如下
from pyecharts.charts import Geo
# 旧版本测试地理图
data = [
("海门", 95), ("鄂尔多斯", 15), ("招远", 12), ("舟山", 12), ("齐齐哈尔", 14), ("盐城", 15),
("赤峰", 16), ("青岛", 18), ("乳山", 18), ("金昌", 19), ("泉州", 21), ("莱西", 21),
("日照", 21), ("胶南", 22), ("南通", 23), ("拉萨", 24), ("云浮", 24), ("梅州", 25),
("文登", 25), ("上海", 25), ("攀枝花", 25), ("威海", 25), ("承德", 25), ("厦门", 26),
("汕尾", 26), ("潮州", 26), ("丹东", 27), ("太仓", 27), ("曲靖", 27), ("烟台", 28),
("福州", 29), ("瓦房店", 30), ("即墨", 50), ("抚顺", 31), ("玉溪", 31), ("张家口", 31),
("阳泉", 31), ("莱州", 42), ("湖州", 32), ("汕头", 32), ("昆山", 33), ("宁波", 33),
("湛江", 33), ("揭阳", 44), ("荣成", 54), ("连云港", 35), ("葫芦岛", 35), ("常熟", 36),
("东莞", 36), ("河源", 36), ("淮安", 56), ("泰州", 36), ("南宁", 47), ("营口", 37),
("惠州", 37), ("江阴", 67), ("蓬莱", 57), ("韶关", 38), ("嘉峪关", 78), ("广州", 38),
("延安", 38), ("太原", 69), ("清远", 59), ("中山", 39), ("昆明", 79), ("寿光", 40),
("盘锦", 40), ("长治", 61), ("深圳", 51), ("珠海", 42), ("宿迁", 73), ("咸阳", 43),
("铜川", 44), ("平度", 64), ("佛山", 54), ("海口", 44), ("江门", 75), ("章丘", 45),
("肇庆", 46), ("大连", 67), ("临汾", 57), ("吴江", 47), ("石嘴山", 9), ("沈阳", 50),
("苏州", 50), ("茂名", 60), ("嘉兴", 41), ("长春", 51), ("胶州", 52), ("银川", 52),
("张家港", 52), ("三门峡", 53), ("锦州", 54), ("南昌", 54), ("柳州", 54), ("三亚", 54),
("自贡", 56), ("吉林", 56), ("阳江", 57), ("泸州", 57), ("西宁", 57), ("宜宾", 58),
("呼和浩特", 58), ("成都", 58), ("大同", 58), ("镇江", 59), ("桂林", 59), ("张家界", 59),
("宜兴", 59), ("北海", 60), ("西安", 61), ("金坛", 62), ("东营", 62), ("牡丹江", 63),
("遵义", 63), ("绍兴", 63), ("扬州", 64), ("常州", 64), ("潍坊", 65), ("重庆", 66),
("台州", 67), ("南京", 67), ("滨州", 70), ("贵阳", 71), ("无锡", 71), ("本溪", 71),
("克拉玛依", 72), ("渭南", 72), ("马鞍山", 72), ("宝鸡", 72), ("焦作", 75), ("句容", 75),
("北京", 79), ("徐州", 79), ("衡水", 80), ("包头", 80), ("绵阳", 80), ("乌鲁木齐", 84),
("枣庄", 84), ("杭州", 84), ("淄博", 85), ("鞍山", 86), ("溧阳", 86), ("库尔勒", 86),
("安阳", 90), ("开封", 90), ("济南", 92), ("德阳", 93), ("温州", 95), ("九江", 96),
("邯郸", 98), ("临安", 99), ("兰州", 99), ("沧州", 100), ("临沂", 103), ("南充", 104),
("天津", 105), ("富阳", 106), ("泰安", 112), ("诸暨", 112), ("郑州", 113), ("哈尔滨", 114),
("聊城", 116), ("芜湖", 117), ("唐山", 119), ("平顶山", 119), ("邢台", 119), ("德州", 120),
("济宁", 120), ("荆州", 127), ("宜昌", 130), ("义乌", 132), ("丽水", 133), ("洛阳", 134),
("秦皇岛", 136), ("株洲", 143), ("石家庄", 147), ("莱芜", 148), ("常德", 152), ("保定", 153),
("湘潭", 154), ("金华", 157), ("岳阳", 169), ("长沙", 175), ("衢州", 177), ("廊坊", 193),
("菏泽", 194), ("合肥", 229), ("武汉", 273), ("大庆", 279)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="b",
title_pos = "center", width = 1200,
height = 600, background_color = '#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[0, 200], visual_text_color="#fff",
symbol_size = 15, is_visualmap = True)
geo.render()
geo
解决不显示地图问题
sudo pip install echarts-countries-pypkg
sudo pip install echarts-china-provinces-pypkg
sudo pip install echarts-china-cities-pypkg
sudo pip install echarts-countries-pypkg
sudo pip install echarts-china-provinces-pypkg
sudo pip install echarts-china-cities-pypkg
效果图如下:
上面为默认的“scatter”类型,下面我们画一下’effectScatter’类型
attr, value = geo.cast(data)
geo.add("", attr, value, type="effectScatter", is_random=True, effect_scale=5)
geo.render("effect.html")
下面画一下 ‘headmap’类型,这是非常常用的一种类型。
geo.add("", attr, value, type="heatmap", is_visualmap=True, visual_range=[0, 300],
visual_text_color='#fff')
geo.render("headmap.html")
3、地理坐标系线图
适用于分析数据出行
from pyecharts import GeoLines, Style
style = Style(title_top="#fff",title_pos = "center",width=1200,height=600,background_color="#404a59")
style_geo = style.add(is_label_show=True,line_curve=0.2,line_opacity=0.6,legend_text_color="#eee",
legend_pos="right",geo_effect_symbol="plane",geo_effect_symbolsize=15,label_color=['#a6c84c', '#ffa022', '#46bee9'],
label_pos="right",label_formatter="{b}",label_text_color="#eee",)
data_guangzhou = [
["广州", "上海"],
["广州", "北京"],
["广州", "呼和浩特"],
["广州", "太原"],
["广州", "长沙"],
["广州", "吐鲁番"]
]
geolines = GeoLines("GeoLines 示例 -DataScience", **style.init_style)
geolines.add("从广州出发", data_guangzhou, **style_geo)
geolines.render()
4、关系图
关系图是用于展现节点以及节点之间的关系的一种图,顾名思义,它用以分析关系最为适合,比如微博转发关系,文章引用关系等。
from pyecharts import Graph
nodes = [{"name": "a", "symbolSize": 10},
{"name": "b", "symbolSize": 20},
{"name": "c", "symbolSize": 30},
{"name": "d", "symbolSize": 40},
{"name": "e", "symbolSize": 50},
{"name": "f", "symbolSize": 40},
{"name": "g", "symbolSize": 30},
{"name": "h", "symbolSize": 20}]
links = []
for i in nodes:
for j in nodes:
links.append({"source": i.get('name'), "target": j.get('name')})
graph = Graph("关系图-环形布局示例-DataScience 提供")
graph.add("", nodes, links, is_label_show=True,
graph_repulsion=8000, graph_layout='circular',
label_text_color=None)
graph.render("graph.html")
5、词云
# 数据指标随机生成的,名字是安装本期活动顺序写的
from pyecharts import WordCloud
name = [
'喵呜', '四方', '映琴', '梧桐', 'Ray',
'子逐', '小明', '小小外星人', '大熊喵喵喵', 'Tony', '木夫',
'平凡人', '不染', 'W.', '白饭', 'vicky',
'不是', '挖掘机', '陌影', '赛茜']
value = [
10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112,
965, 847, 582, 555, 550, 462, 366, 360, 282, 273, 265]
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.render("wordcloud.html")
6、图表
#coding=utf-8
from __future__ import unicode_literals
#首先来我的绘制第一个图表
from pyecharts import Bar
bar = Bar("我的第一个图表","这里是一个副标题(DataScience)")
bar.add("分类",["A","B","C","D","E","F"],[15,18,35,66,6,88])
#bar.print_echarts_options() # 该行只为了打印配置项,方便调试时使用
bar.render() #生成本地 HTML 文件
bar
参数说明:
- ·add()
- 主要方法,用于添加图表的数据和设置各种配置项
·print_echarts_options()
- 打印输出图表的所有配置项
·render()
- 默认将会在根目录下生成一个render.html的文件,支持
path参数
,设置文件保存位置。
- 默认将会在根目录下生成一个render.html的文件,支持
例如:render(r”e:\my_first_chart.html”),文件用浏览器打开
- ·Note:
- 可以按右边的下载按钮将图片下载到本地,如果想要提供更多实用工具按钮,请在add()中设置
is_more_utils 为True
- 可以按右边的下载按钮将图片下载到本地,如果想要提供更多实用工具按钮,请在add()中设置
图形绘制过程
步骤 描述 代码示例 备注
- 实例一个具体类型图表的对象 chart = FooChart()
- 为图表添加通用的配置,如主题 chart.use_theme()
- 为图表添加特定的配置 geo.add_coordinate()
- 添加数据及配置项 chart.add()5 生成本地文件(html/svg/jpeg/png/pdf/gif)chart.render() 参考 数据解析与导入篇
7、柱状图
# note :使用Pandas & Numpy 时,整数类型请确保为int, 而不是 numpy.int32
#当然你可以采用更加酷炫的方式,使用jupyter notebook 来展示图表,matplotib有的,
# pyecharts 也会有的
#Note :从v0.1.9.2版本开始,废弃 render_notebook() 方法,现在已采用更加pythonic的做法。
#直接调用本身实例就可以了。
#EG 案例
from pyecharts import Bar
attr = ["{}月".format(i) for i in range(1,13)]
v1 = [2.0,4.9,7.0,23.2,25.6,76.7,135.6,162.2,32.6,20.0,6.4,3.3]
v2 = [2.6,5.9,9.0,26.4,28.7,70.7,175.6,182.2,48.7,18.8,6.0,2.3]
bar = Bar("柱状图示例-DataScience")
bar.add("增长数",attr,v1,mark_line=["average"],mark_point=["max","min"])
bar.add("取关数",attr,v2,mark_line=["average"],mark_point=["max","min"])
bar
8、饼图
# 饼图
from pyecharts import Pie
attr = ["算法","产品","大数据","数据分析","Python","数据可视化"]
v1 = [11,12,13,10,10,10]
v2 = [19,21,32,20,20,33]
pie= Pie("饼图-玫瑰图示例-DataScience",title_pos='center',width=900)
pie.add("品种A",attr,v1,center=[25,50],is_random=True,redius=[30,75],rosetype='redius')
pie.add("品种B",attr,v2,center=[75,50],is_random=True,redius=[30,75],rosetype='area',is_legend_show=False,is_label_show=True)
pie
9、自定义
# 如果使用的是 自定义类,直接调用自定义类示例即可
from pyecharts import Bar,Line,Overlap
attr = ["A","B","C","D","E","F"]
v1 = [10,20,30,40,50,60]
v2 = [38,28,58,48,88,68]
bar =Bar("Line-Bar 示例")
bar.add("bar",attr,v1)
line = Line()
line.add("line",attr,v2)
overlap = Overlap()
overlap.add(bar)
overlap.add(line)
overlap
- 如需使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。
- 所有图表均可正常显示,与浏览器一致的交互体验,这下展示报告连 PPT 都省了!!
请添加小编,回复关键词:[数据可视化],
-今日互动-
你学会了吗?
欢迎文章下方留言互动
如果对你有帮助的话
❤️来个「转发朋友圈」和「在看」,是最大的支持❤️
还没有评论,来说两句吧...