发表评论取消回复
相关阅读
相关 《动手学深度学习》图像增广(数据增强)
图像增广 图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。 其优点在于通过
相关 《动手学深度学习》PyTorch 版本总结(1)
通过伯禹学习平台和Kesci平台,参与了一项14天学习《动手学深度学习》课程,这本书是由李沐等大神编写而成,并提供了配套的视频和源代码。这次活动主要是将里面的Mxnet 框架改
相关 动手学习深度学习pytorch版学习笔记(一)—— softmax多元线性回归
关于多元线性回归,主要理解两个概念:softmax和交叉熵损失函数: 一、softmax的基本概念: 1.分类问题 一个简单的图像分类问题,输入图像的高和宽均为2
相关 《动手学深度学习》softmax回归(PyTorch版)
softmax-regression 1 分类问题 2 softmax回归模型 3 单样本分类的矢量计算表达式 4 小批量样本分类的矢量计算表达式
相关 《动手学深度学习》线性回归的简洁实现(linear-regression-pytorch)
线性回归的简洁实现(linear-regression-pytorch) 1. 生成数据集 2. 读取数据 3. 定义模型 4. 初始化模型参数
还没有评论,来说两句吧...