(大佬)睿智的目标检测13——Keras搭建mtcnn人脸检测平台
原文链接:https://blog.csdn.net/weixin\_44791964/article/details/103530206
睿智的目标检测13——Keras搭建mtcnn人脸检测平台
- 学习前言
- 什么是mtcnn
- 代码下载
- 实现流程
- 1、构建图像金字塔
- 2、Pnet
- 3、Rnet
- 4、Onet
- mtcnn的效果
学习前言
考试啦考试啦考试啦考试啦。
什么是mtcnn
MTCNN,英文全称是Multi-task convolutional neural network,中文全称是多任务卷积神经网络,该神经网络将人脸区域检测与人脸关键点检测放在了一起。总体可分为P-Net、R-Net、和O-Net三层网络结构。
代码下载
https://github.com/bubbliiiing/mtcnn-keras
实现流程
1、构建图像金字塔
首先将图像进行不同尺度的变换,构建图像金字塔,以适应不同大小的人脸的进行检测。
构建方式是通过不同的缩放系数factor对图片进行缩放,每次缩小为原来的factor大小。
实现示意图如下:
实现代码如下,当一个图片输入的时候,会缩放为不同大小的图片,但是缩小后的长宽最小不可以小于12:
#-----------------------------#
# 计算原始输入图像
# 每一次缩放的比例
#-----------------------------#
def calculateScales(img):
copy_img = img.copy()
pr_scale = 1.0
h,w,_ = copy_img.shape
if min(w,h)>500:
pr_scale = 500.0/min(h,w)
w = int(w*pr_scale)
h = int(h*pr_scale)
elif max(w,h)<500:
pr_scale = 500.0/max(h,w)
w = int(w*pr_scale)
h = int(h*pr_scale)
scales <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token punctuation">]</span>
factor <span class="token operator">=</span> <span class="token number">0.709</span>
factor_count <span class="token operator">=</span> <span class="token number">0</span>
minl <span class="token operator">=</span> <span class="token builtin">min</span><span class="token punctuation">(</span>h<span class="token punctuation">,</span>w<span class="token punctuation">)</span>
<span class="token keyword">while</span> minl <span class="token operator">>=</span> <span class="token number">12</span><span class="token punctuation">:</span>
scales<span class="token punctuation">.</span>append<span class="token punctuation">(</span>pr_scale<span class="token operator">*</span><span class="token builtin">pow</span><span class="token punctuation">(</span>factor<span class="token punctuation">,</span> factor_count<span class="token punctuation">)</span><span class="token punctuation">)</span>
minl <span class="token operator">*=</span> factor
factor_count <span class="token operator">+=</span> <span class="token number">1</span>
<span class="token keyword">return</span> scales
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
2、Pnet
Pnet的全称为Proposal Network,其基本的构造是一个全卷积网络。对上一步构建完成的图像金字塔,通过一个FCN进行初步特征提取与标定边框。
实现图片示意图如下:
Pnet的网络比较简单,实现代码如下:
#-----------------------------#
# 粗略获取人脸框
# 输出bbox位置和是否有人脸
#-----------------------------#
def create_Pnet(weight_path):
input = Input(shape=[None, None, 3])
x <span class="token operator">=</span> Conv2D<span class="token punctuation">(</span><span class="token number">10</span><span class="token punctuation">,</span> <span class="token punctuation">(</span><span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">3</span><span class="token punctuation">)</span><span class="token punctuation">,</span> strides<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">,</span> padding<span class="token operator">=</span><span class="token string">'valid'</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv1'</span><span class="token punctuation">)</span><span class="token punctuation">(</span><span class="token builtin">input</span><span class="token punctuation">)</span>
x <span class="token operator">=</span> PReLU<span class="token punctuation">(</span>shared_axes<span class="token operator">=</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span><span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">,</span>name<span class="token operator">=</span><span class="token string">'PReLU1'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> MaxPool2D<span class="token punctuation">(</span>pool_size<span class="token operator">=</span><span class="token number">2</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> Conv2D<span class="token punctuation">(</span><span class="token number">16</span><span class="token punctuation">,</span> <span class="token punctuation">(</span><span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">3</span><span class="token punctuation">)</span><span class="token punctuation">,</span> strides<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">,</span> padding<span class="token operator">=</span><span class="token string">'valid'</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv2'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> PReLU<span class="token punctuation">(</span>shared_axes<span class="token operator">=</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span><span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">,</span>name<span class="token operator">=</span><span class="token string">'PReLU2'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> Conv2D<span class="token punctuation">(</span><span class="token number">32</span><span class="token punctuation">,</span> <span class="token punctuation">(</span><span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">3</span><span class="token punctuation">)</span><span class="token punctuation">,</span> strides<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">,</span> padding<span class="token operator">=</span><span class="token string">'valid'</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv3'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> PReLU<span class="token punctuation">(</span>shared_axes<span class="token operator">=</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span><span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">,</span>name<span class="token operator">=</span><span class="token string">'PReLU3'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
classifier <span class="token operator">=</span> Conv2D<span class="token punctuation">(</span><span class="token number">2</span><span class="token punctuation">,</span> <span class="token punctuation">(</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">)</span><span class="token punctuation">,</span> activation<span class="token operator">=</span><span class="token string">'softmax'</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv4-1'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
<span class="token comment"># 无激活函数,线性。</span>
bbox_regress <span class="token operator">=</span> Conv2D<span class="token punctuation">(</span><span class="token number">4</span><span class="token punctuation">,</span> <span class="token punctuation">(</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">)</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv4-2'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
model <span class="token operator">=</span> Model<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token builtin">input</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span>classifier<span class="token punctuation">,</span> bbox_regress<span class="token punctuation">]</span><span class="token punctuation">)</span>
model<span class="token punctuation">.</span>load_weights<span class="token punctuation">(</span>weight_path<span class="token punctuation">,</span> by_name<span class="token operator">=</span><span class="token boolean">True</span><span class="token punctuation">)</span>
<span class="token keyword">return</span> model
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
在完成初步提取后,还需要进行Bounding-Box Regression调整窗口与NMS进行大部分窗口的过滤。
Pnet有两个输出,classifier用于判断这个网格点上的框的可信度,bbox_regress表示框的位置。
bbox_regress并不代表这个框在图片上的真实位置,如果需要将bbox_regress映射到真实图像上,还需要进行一次解码过程。
解码过程利用detect_face_12net函数实现,其实现步骤如下(需要配合代码理解):
1、判断哪些网格点的置信度较高,即该网格点内存在人脸。
2、记录该网格点的x,y轴。
3、利用函数计算bb1和bb2,分别代表图中框的左上角基点和右下角基点,二者之间差了11个像素,堆叠得到boundingbox 。
4、利用bbox_regress计算解码结果,解码公式为boundingbox = boundingbox + offset*12.0*scale。
简单理解就是Pnet的输出就是将整个网格分割成若干个网格点,;然后每个网格点初始状态下是一个11x11的框,这个由第三步得到;之后bbox_regress代表 每个网格点确定的框 的 左上角基点和右下角基点 的偏移情况。
#-------------------------------------#
# 对pnet处理后的结果进行处理
#-------------------------------------#
def detect_face_12net(cls_prob,roi,out_side,scale,width,height,threshold):
cls_prob = np.swapaxes(cls_prob, 0, 1)
roi = np.swapaxes(roi, 0, 2)
stride <span class="token operator">=</span> <span class="token number">0</span>
<span class="token comment"># stride略等于2</span>
<span class="token keyword">if</span> out_side <span class="token operator">!=</span> <span class="token number">1</span><span class="token punctuation">:</span>
stride <span class="token operator">=</span> <span class="token builtin">float</span><span class="token punctuation">(</span><span class="token number">2</span><span class="token operator">*</span>out_side<span class="token operator">-</span><span class="token number">1</span><span class="token punctuation">)</span><span class="token operator">/</span><span class="token punctuation">(</span>out_side<span class="token operator">-</span><span class="token number">1</span><span class="token punctuation">)</span>
<span class="token punctuation">(</span>x<span class="token punctuation">,</span>y<span class="token punctuation">)</span> <span class="token operator">=</span> np<span class="token punctuation">.</span>where<span class="token punctuation">(</span>cls_prob<span class="token operator">>=</span>threshold<span class="token punctuation">)</span>
boundingbox <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span>x<span class="token punctuation">,</span>y<span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
<span class="token comment"># 找到对应原图的位置</span>
bb1 <span class="token operator">=</span> np<span class="token punctuation">.</span>fix<span class="token punctuation">(</span><span class="token punctuation">(</span>stride <span class="token operator">*</span> <span class="token punctuation">(</span>boundingbox<span class="token punctuation">)</span> <span class="token operator">+</span> <span class="token number">0</span> <span class="token punctuation">)</span> <span class="token operator">*</span> scale<span class="token punctuation">)</span>
bb2 <span class="token operator">=</span> np<span class="token punctuation">.</span>fix<span class="token punctuation">(</span><span class="token punctuation">(</span>stride <span class="token operator">*</span> <span class="token punctuation">(</span>boundingbox<span class="token punctuation">)</span> <span class="token operator">+</span> <span class="token number">11</span><span class="token punctuation">)</span> <span class="token operator">*</span> scale<span class="token punctuation">)</span>
<span class="token comment"># plt.scatter(bb1[:,0],bb1[:,1],linewidths=1)</span>
<span class="token comment"># plt.scatter(bb2[:,0],bb2[:,1],linewidths=1,c='r')</span>
<span class="token comment"># plt.show()</span>
boundingbox <span class="token operator">=</span> np<span class="token punctuation">.</span>concatenate<span class="token punctuation">(</span><span class="token punctuation">(</span>bb1<span class="token punctuation">,</span>bb2<span class="token punctuation">)</span><span class="token punctuation">,</span>axis <span class="token operator">=</span> <span class="token number">1</span><span class="token punctuation">)</span>
dx1 <span class="token operator">=</span> roi<span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">[</span>x<span class="token punctuation">,</span>y<span class="token punctuation">]</span>
dx2 <span class="token operator">=</span> roi<span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">[</span>x<span class="token punctuation">,</span>y<span class="token punctuation">]</span>
dx3 <span class="token operator">=</span> roi<span class="token punctuation">[</span><span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">[</span>x<span class="token punctuation">,</span>y<span class="token punctuation">]</span>
dx4 <span class="token operator">=</span> roi<span class="token punctuation">[</span><span class="token number">3</span><span class="token punctuation">]</span><span class="token punctuation">[</span>x<span class="token punctuation">,</span>y<span class="token punctuation">]</span>
score <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span>cls_prob<span class="token punctuation">[</span>x<span class="token punctuation">,</span>y<span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
offset <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span>dx1<span class="token punctuation">,</span>dx2<span class="token punctuation">,</span>dx3<span class="token punctuation">,</span>dx4<span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
boundingbox <span class="token operator">=</span> boundingbox <span class="token operator">+</span> offset<span class="token operator">*</span><span class="token number">12.0</span><span class="token operator">*</span>scale
rectangles <span class="token operator">=</span> np<span class="token punctuation">.</span>concatenate<span class="token punctuation">(</span><span class="token punctuation">(</span>boundingbox<span class="token punctuation">,</span>score<span class="token punctuation">)</span><span class="token punctuation">,</span>axis<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">)</span>
rectangles <span class="token operator">=</span> rect2square<span class="token punctuation">(</span>rectangles<span class="token punctuation">)</span>
pick <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token punctuation">]</span>
<span class="token keyword">for</span> i <span class="token keyword">in</span> <span class="token builtin">range</span><span class="token punctuation">(</span><span class="token builtin">len</span><span class="token punctuation">(</span>rectangles<span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
x1 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">max</span><span class="token punctuation">(</span><span class="token number">0</span> <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
y1 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">max</span><span class="token punctuation">(</span><span class="token number">0</span> <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
x2 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">min</span><span class="token punctuation">(</span>width <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
y2 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">min</span><span class="token punctuation">(</span>height<span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">3</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
sc <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">4</span><span class="token punctuation">]</span>
<span class="token keyword">if</span> x2<span class="token operator">></span>x1 <span class="token operator">and</span> y2<span class="token operator">></span>y1<span class="token punctuation">:</span>
pick<span class="token punctuation">.</span>append<span class="token punctuation">(</span><span class="token punctuation">[</span>x1<span class="token punctuation">,</span>y1<span class="token punctuation">,</span>x2<span class="token punctuation">,</span>y2<span class="token punctuation">,</span>sc<span class="token punctuation">]</span><span class="token punctuation">)</span>
<span class="token keyword">return</span> NMS<span class="token punctuation">(</span>pick<span class="token punctuation">,</span><span class="token number">0.3</span><span class="token punctuation">)</span>
#——————————————-#
# 将长方形调整为正方形
#——————————————-#
def rect2square(rectangles):
w = rectangles[:,2] - rectangles[:,0]
h = rectangles[:,3] - rectangles[:,1]
l = np.maximum(w,h).T
rectangles[:,0] = rectangles[:,0] + w0.5 - l0.5
rectangles[:,1] = rectangles[:,1] + h0.5 - l0.5
rectangles[:,2:4] = rectangles[:,0:2] + np.repeat([l], 2, axis = 0).T
return rectangles
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
3、Rnet
Rnet全称为Refine Network,其基本的构造是一个卷积神经网络,相对于第一层的P-Net来说,增加了一个全连接层,因此对于输入数据的筛选会更加严格。在图片经过P-Net后,会留下许多预测窗口,我们将所有的预测窗口送入R-Net,这个网络会滤除大量效果比较差的候选框。
实现图片示意图如下:
实现代码如下:
#-----------------------------#
# mtcnn的第二段
# 精修框
#-----------------------------#
def create_Rnet(weight_path):
input = Input(shape=[24, 24, 3])
# 24,24,3 -> 11,11,28
x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1, 2], name='prelu1')(x)
x = MaxPool2D(pool_size=3,strides=2, padding='same')(x)
<span class="token comment"># 11,11,28 -> 4,4,48</span>
x <span class="token operator">=</span> Conv2D<span class="token punctuation">(</span><span class="token number">48</span><span class="token punctuation">,</span> <span class="token punctuation">(</span><span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">3</span><span class="token punctuation">)</span><span class="token punctuation">,</span> strides<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">,</span> padding<span class="token operator">=</span><span class="token string">'valid'</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv2'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> PReLU<span class="token punctuation">(</span>shared_axes<span class="token operator">=</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'prelu2'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> MaxPool2D<span class="token punctuation">(</span>pool_size<span class="token operator">=</span><span class="token number">3</span><span class="token punctuation">,</span> strides<span class="token operator">=</span><span class="token number">2</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
<span class="token comment"># 4,4,48 -> 3,3,64</span>
x <span class="token operator">=</span> Conv2D<span class="token punctuation">(</span><span class="token number">64</span><span class="token punctuation">,</span> <span class="token punctuation">(</span><span class="token number">2</span><span class="token punctuation">,</span> <span class="token number">2</span><span class="token punctuation">)</span><span class="token punctuation">,</span> strides<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">,</span> padding<span class="token operator">=</span><span class="token string">'valid'</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv3'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> PReLU<span class="token punctuation">(</span>shared_axes<span class="token operator">=</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'prelu3'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
<span class="token comment"># 3,3,64 -> 64,3,3</span>
x <span class="token operator">=</span> Permute<span class="token punctuation">(</span><span class="token punctuation">(</span><span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">2</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> Flatten<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
<span class="token comment"># 576 -> 128</span>
x <span class="token operator">=</span> Dense<span class="token punctuation">(</span><span class="token number">128</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv4'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> PReLU<span class="token punctuation">(</span> name<span class="token operator">=</span><span class="token string">'prelu4'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
<span class="token comment"># 128 -> 2 128 -> 4</span>
classifier <span class="token operator">=</span> Dense<span class="token punctuation">(</span><span class="token number">2</span><span class="token punctuation">,</span> activation<span class="token operator">=</span><span class="token string">'softmax'</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv5-1'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
bbox_regress <span class="token operator">=</span> Dense<span class="token punctuation">(</span><span class="token number">4</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv5-2'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
model <span class="token operator">=</span> Model<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token builtin">input</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span>classifier<span class="token punctuation">,</span> bbox_regress<span class="token punctuation">]</span><span class="token punctuation">)</span>
model<span class="token punctuation">.</span>load_weights<span class="token punctuation">(</span>weight_path<span class="token punctuation">,</span> by_name<span class="token operator">=</span><span class="token boolean">True</span><span class="token punctuation">)</span>
<span class="token keyword">return</span> model
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
最后对选定的候选框进行Bounding-Box Regression和NMS进一步优化预测结果。
Rnet有两个输出,classifier用于判断这个网格点上的框的可信度,bbox_regress表示框的位置。
bbox_regress并不代表这个框在图片上的真实位置,如果需要将bbox_regress映射到真实图像上,还需要进行一次解码过程。
解码过程需要与Pnet的结果进行结合。在代码中,x1、y1、x2、y2代表由Pnet得到的图片在原图上的位置,w=x2-x1和h=y2-y1代表宽和高,bbox_regress与Pnet的结果结合的方式如下:
x1 = np.array([(x1+dx1*w)[0]]).T
y1 = np.array([(y1+dx2*h)[0]]).T
x2 = np.array([(x2+dx3*w)[0]]).T
y2 = np.array([(y2+dx4*h)[0]]).T
1
2
3
4
其中dx1、dx2、dy1、dy2就是Rnet获得的bbox_regress,实际上Rnet获得bbox_regress是长宽的缩小比例。
回归方法与Pnet不同,但是原理更加简单一些。
实现代码如下:
#-------------------------------------#
# 对pnet处理后的结果进行处理
#-------------------------------------#
def filter_face_24net(cls_prob,roi,rectangles,width,height,threshold):
prob <span class="token operator">=</span> cls_prob<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token punctuation">,</span><span class="token number">1</span><span class="token punctuation">]</span>
pick <span class="token operator">=</span> np<span class="token punctuation">.</span>where<span class="token punctuation">(</span>prob<span class="token operator">>=</span>threshold<span class="token punctuation">)</span>
rectangles <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span>rectangles<span class="token punctuation">)</span>
x1 <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">0</span><span class="token punctuation">]</span>
y1 <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">1</span><span class="token punctuation">]</span>
x2 <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">2</span><span class="token punctuation">]</span>
y2 <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">3</span><span class="token punctuation">]</span>
sc <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span>prob<span class="token punctuation">[</span>pick<span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
dx1 <span class="token operator">=</span> roi<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">0</span><span class="token punctuation">]</span>
dx2 <span class="token operator">=</span> roi<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">1</span><span class="token punctuation">]</span>
dx3 <span class="token operator">=</span> roi<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">2</span><span class="token punctuation">]</span>
dx4 <span class="token operator">=</span> roi<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">3</span><span class="token punctuation">]</span>
w <span class="token operator">=</span> x2<span class="token operator">-</span>x1
h <span class="token operator">=</span> y2<span class="token operator">-</span>y1
x1 <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>x1<span class="token operator">+</span>dx1<span class="token operator">*</span>w<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
y1 <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>y1<span class="token operator">+</span>dx2<span class="token operator">*</span>h<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
x2 <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>x2<span class="token operator">+</span>dx3<span class="token operator">*</span>w<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
y2 <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>y2<span class="token operator">+</span>dx4<span class="token operator">*</span>h<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
rectangles <span class="token operator">=</span> np<span class="token punctuation">.</span>concatenate<span class="token punctuation">(</span><span class="token punctuation">(</span>x1<span class="token punctuation">,</span>y1<span class="token punctuation">,</span>x2<span class="token punctuation">,</span>y2<span class="token punctuation">,</span>sc<span class="token punctuation">)</span><span class="token punctuation">,</span>axis<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">)</span>
rectangles <span class="token operator">=</span> rect2square<span class="token punctuation">(</span>rectangles<span class="token punctuation">)</span>
pick <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token punctuation">]</span>
<span class="token keyword">for</span> i <span class="token keyword">in</span> <span class="token builtin">range</span><span class="token punctuation">(</span><span class="token builtin">len</span><span class="token punctuation">(</span>rectangles<span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
x1 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">max</span><span class="token punctuation">(</span><span class="token number">0</span> <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
y1 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">max</span><span class="token punctuation">(</span><span class="token number">0</span> <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
x2 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">min</span><span class="token punctuation">(</span>width <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
y2 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">min</span><span class="token punctuation">(</span>height<span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">3</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
sc <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">4</span><span class="token punctuation">]</span>
<span class="token keyword">if</span> x2<span class="token operator">></span>x1 <span class="token operator">and</span> y2<span class="token operator">></span>y1<span class="token punctuation">:</span>
pick<span class="token punctuation">.</span>append<span class="token punctuation">(</span><span class="token punctuation">[</span>x1<span class="token punctuation">,</span>y1<span class="token punctuation">,</span>x2<span class="token punctuation">,</span>y2<span class="token punctuation">,</span>sc<span class="token punctuation">]</span><span class="token punctuation">)</span>
<span class="token keyword">return</span> NMS<span class="token punctuation">(</span>pick<span class="token punctuation">,</span><span class="token number">0.3</span><span class="token punctuation">)</span>
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
4、Onet
Onet与Rnet工作流程类似。
全称为Output Network,基本结构是一个较为复杂的卷积神经网络,相对于R-Net来说多了一个卷积层。O-Net的效果与R-Net的区别在于这一层结构会通过更多的监督来识别面部的区域,而且会对人的面部特征点进行回归,最终输出五个人脸面部特征点。
实现图片示意图如下:
实现代码如下:
#-----------------------------#
# mtcnn的第三段
# 精修框并获得五个点
#-----------------------------#
def create_Onet(weight_path):
input = Input(shape = [48,48,3])
# 48,48,3 -> 23,23,32
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1,2],name='prelu1')(x)
x = MaxPool2D(pool_size=3, strides=2, padding='same')(x)
# 23,23,32 -> 10,10,64
x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = PReLU(shared_axes=[1,2],name='prelu2')(x)
x = MaxPool2D(pool_size=3, strides=2)(x)
# 8,8,64 -> 4,4,64
x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv3')(x)
x = PReLU(shared_axes=[1,2],name='prelu3')(x)
x = MaxPool2D(pool_size=2)(x)
# 4,4,64 -> 3,3,128
x = Conv2D(128, (2, 2), strides=1, padding='valid', name='conv4')(x)
x = PReLU(shared_axes=[1,2],name='prelu4')(x)
# 3,3,128 -> 128,12,12
x = Permute((3,2,1))(x)
<span class="token comment"># 1152 -> 256</span>
x <span class="token operator">=</span> Flatten<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> Dense<span class="token punctuation">(</span><span class="token number">256</span><span class="token punctuation">,</span> name<span class="token operator">=</span><span class="token string">'conv5'</span><span class="token punctuation">)</span> <span class="token punctuation">(</span>x<span class="token punctuation">)</span>
x <span class="token operator">=</span> PReLU<span class="token punctuation">(</span>name<span class="token operator">=</span><span class="token string">'prelu5'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
<span class="token comment"># 鉴别</span>
<span class="token comment"># 256 -> 2 256 -> 4 256 -> 10 </span>
classifier <span class="token operator">=</span> Dense<span class="token punctuation">(</span><span class="token number">2</span><span class="token punctuation">,</span> activation<span class="token operator">=</span><span class="token string">'softmax'</span><span class="token punctuation">,</span>name<span class="token operator">=</span><span class="token string">'conv6-1'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
bbox_regress <span class="token operator">=</span> Dense<span class="token punctuation">(</span><span class="token number">4</span><span class="token punctuation">,</span>name<span class="token operator">=</span><span class="token string">'conv6-2'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
landmark_regress <span class="token operator">=</span> Dense<span class="token punctuation">(</span><span class="token number">10</span><span class="token punctuation">,</span>name<span class="token operator">=</span><span class="token string">'conv6-3'</span><span class="token punctuation">)</span><span class="token punctuation">(</span>x<span class="token punctuation">)</span>
model <span class="token operator">=</span> Model<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token builtin">input</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span>classifier<span class="token punctuation">,</span> bbox_regress<span class="token punctuation">,</span> landmark_regress<span class="token punctuation">]</span><span class="token punctuation">)</span>
model<span class="token punctuation">.</span>load_weights<span class="token punctuation">(</span>weight_path<span class="token punctuation">,</span> by_name<span class="token operator">=</span><span class="token boolean">True</span><span class="token punctuation">)</span>
<span class="token keyword">return</span> model
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
最后对选定的候选框进行Bounding-Box Regression和NMS进一步优化预测结果。
Onet有三个输出,classifier用于判断这个网格点上的框的可信度,bbox_regress表示框的位置,landmark_regress表示脸上的五个标志点
bbox_regress并不代表这个框在图片上的真实位置,如果需要将bbox_regress映射到真实图像上,还需要进行一次解码过程。
解码过程需要与Rnet的结果进行结合。在代码中,x1、y1、x2、y2代表由Rnet得到的图片在原图上的位置,w=x2-x1和h=y2-y1代表宽和高,bbox_regress与Rnet的结果结合的方式如下:
x1 = np.array([(x1+dx1*w)[0]]).T
y1 = np.array([(y1+dx2*h)[0]]).T
x2 = np.array([(x2+dx3*w)[0]]).T
y2 = np.array([(y2+dx4*h)[0]]).T
1
2
3
4
其中dx1、dx2、dy1、dy2就是Onet获得的bbox_regress,实际上Onet获得bbox_regress是长宽的缩小比例。
实现代码如下:
#-------------------------------------#
# 对onet处理后的结果进行处理
#-------------------------------------#
def filter_face_48net(cls_prob,roi,pts,rectangles,width,height,threshold):
prob <span class="token operator">=</span> cls_prob<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token punctuation">,</span><span class="token number">1</span><span class="token punctuation">]</span>
pick <span class="token operator">=</span> np<span class="token punctuation">.</span>where<span class="token punctuation">(</span>prob<span class="token operator">>=</span>threshold<span class="token punctuation">)</span>
rectangles <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span>rectangles<span class="token punctuation">)</span>
x1 <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">0</span><span class="token punctuation">]</span>
y1 <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">1</span><span class="token punctuation">]</span>
x2 <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">2</span><span class="token punctuation">]</span>
y2 <span class="token operator">=</span> rectangles<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">3</span><span class="token punctuation">]</span>
sc <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span>prob<span class="token punctuation">[</span>pick<span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
dx1 <span class="token operator">=</span> roi<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">0</span><span class="token punctuation">]</span>
dx2 <span class="token operator">=</span> roi<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">1</span><span class="token punctuation">]</span>
dx3 <span class="token operator">=</span> roi<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">2</span><span class="token punctuation">]</span>
dx4 <span class="token operator">=</span> roi<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">3</span><span class="token punctuation">]</span>
w <span class="token operator">=</span> x2<span class="token operator">-</span>x1
h <span class="token operator">=</span> y2<span class="token operator">-</span>y1
pts0<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>w<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token operator">+</span>x1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts1<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>h<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">5</span><span class="token punctuation">]</span><span class="token operator">+</span>y1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts2<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>w<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">1</span><span class="token punctuation">]</span><span class="token operator">+</span>x1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts3<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>h<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">6</span><span class="token punctuation">]</span><span class="token operator">+</span>y1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts4<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>w<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">2</span><span class="token punctuation">]</span><span class="token operator">+</span>x1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts5<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>h<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">7</span><span class="token punctuation">]</span><span class="token operator">+</span>y1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts6<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>w<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">3</span><span class="token punctuation">]</span><span class="token operator">+</span>x1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts7<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>h<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">8</span><span class="token punctuation">]</span><span class="token operator">+</span>y1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts8<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>w<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">4</span><span class="token punctuation">]</span><span class="token operator">+</span>x1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
pts9<span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>h<span class="token operator">*</span>pts<span class="token punctuation">[</span>pick<span class="token punctuation">,</span><span class="token number">9</span><span class="token punctuation">]</span><span class="token operator">+</span>y1<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
x1 <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>x1<span class="token operator">+</span>dx1<span class="token operator">*</span>w<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
y1 <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>y1<span class="token operator">+</span>dx2<span class="token operator">*</span>h<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
x2 <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>x2<span class="token operator">+</span>dx3<span class="token operator">*</span>w<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
y2 <span class="token operator">=</span> np<span class="token punctuation">.</span>array<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">(</span>y2<span class="token operator">+</span>dx4<span class="token operator">*</span>h<span class="token punctuation">)</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">.</span>T
rectangles<span class="token operator">=</span>np<span class="token punctuation">.</span>concatenate<span class="token punctuation">(</span><span class="token punctuation">(</span>x1<span class="token punctuation">,</span>y1<span class="token punctuation">,</span>x2<span class="token punctuation">,</span>y2<span class="token punctuation">,</span>sc<span class="token punctuation">,</span>pts0<span class="token punctuation">,</span>pts1<span class="token punctuation">,</span>pts2<span class="token punctuation">,</span>pts3<span class="token punctuation">,</span>pts4<span class="token punctuation">,</span>pts5<span class="token punctuation">,</span>pts6<span class="token punctuation">,</span>pts7<span class="token punctuation">,</span>pts8<span class="token punctuation">,</span>pts9<span class="token punctuation">)</span><span class="token punctuation">,</span>axis<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">)</span>
pick <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token punctuation">]</span>
<span class="token keyword">for</span> i <span class="token keyword">in</span> <span class="token builtin">range</span><span class="token punctuation">(</span><span class="token builtin">len</span><span class="token punctuation">(</span>rectangles<span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
x1 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">max</span><span class="token punctuation">(</span><span class="token number">0</span> <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
y1 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">max</span><span class="token punctuation">(</span><span class="token number">0</span> <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
x2 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">min</span><span class="token punctuation">(</span>width <span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">2</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
y2 <span class="token operator">=</span> <span class="token builtin">int</span><span class="token punctuation">(</span><span class="token builtin">min</span><span class="token punctuation">(</span>height<span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">3</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
<span class="token keyword">if</span> x2<span class="token operator">></span>x1 <span class="token operator">and</span> y2<span class="token operator">></span>y1<span class="token punctuation">:</span>
pick<span class="token punctuation">.</span>append<span class="token punctuation">(</span><span class="token punctuation">[</span>x1<span class="token punctuation">,</span>y1<span class="token punctuation">,</span>x2<span class="token punctuation">,</span>y2<span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">4</span><span class="token punctuation">]</span><span class="token punctuation">,</span>
rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">5</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">6</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">7</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">8</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">9</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">10</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">11</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">12</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">13</span><span class="token punctuation">]</span><span class="token punctuation">,</span>rectangles<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">[</span><span class="token number">14</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
<span class="token keyword">return</span> NMS<span class="token punctuation">(</span>pick<span class="token punctuation">,</span><span class="token number">0.3</span><span class="token punctuation">)</span>
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
最后得到的NMS(pick,0.3)就是识别出的人脸框的位置了。
mtcnn的效果
可以看出来效果还是非常好的。
</div><div><div></div></div>
<link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-e0530931f4.css" rel="stylesheet">
</div>
还没有评论,来说两句吧...