多GPU多个流上实现复制与计算的重叠
- 获取应用程序可使用的 GPU 的数量
- 激活任意可用的 GPU
- 在多个 GPU 上分配显存
- 在多个 GPU 上传入和转出显存数据
- 在多个 GPU 上启动核函数
获取多个 GPU 的相关信息
如要以运行程序的方式得出可用 GPU 的数量,请使用 cudaGetDeviceCount
uint64_t num_gpus;
cudaGetDeviceCount(&num_gpus);
如要以运行程序的方式得到当前处于活动状态的 GPU,请使用 cudaGetDevice:
uint64_t device;
cudaGetDevice(&device); // `device` is now a 0-based index of the current GPU.
设置当前的 GPU
对于每个主机线程,每次只有一个 GPU 设备处于活动状态。如要将特定的 GPU 设置为活动状态,请使用 cudaSetDevice 以及所需 GPU 的索引(从 0 开始):
cudaSetDevice(0);
循环使用可用的 GPU
一种常见的模式为,遍历可用的 GPU,并为每个 GPU 执行相应操作:
uint64_t num_gpus;
cudaGetDeviceCount(&num_gpus);
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
// Perform operations for this GPU.
}
为多个 GPU 执行数据分块
与多个非默认流相同,多个 GPU 中的每个 GPU 都可处理一个数据块。我们将创建和利用数据指针数组,为每个可用的 GPU 分配显存:
uint64_t num_gpus;
cudaGetDeviceCount(&num_gpus);
const uint64_t num_entries = 1UL << 26;
const uint64_t chunk_size = sdiv(num_entries, num_gpus);
uint64_t *data_gpu[num_gpus]; // One pointer for each GPU.
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
const uint64_t lower = chunk_size*gpu;
const uint64_t upper = min(lower+chunk_size, num_entries);
const uint64_t width = upper-lower;
cudaMalloc(&data_gpu[gpu], sizeof(uint64_t)*width); // Allocate chunk of data for current GPU.
}
为多个 GPU 复制数据
通过使用相同的循环遍历和分块技术,我们可在多个 GPU 上传入和传出数据:
// ...Assume data has been allocated on host and for each GPU
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
const uint64_t lower = chunk_size*gpu;
const uint64_t upper = min(lower+chunk_size, num_entries);
const uint64_t width = upper-lower;
// Note use of `cudaMemcpy` and not `cudaMemcpyAsync` since we are not
// presently using non-default streams.
cudaMemcpy(data_gpu[gpu], data_cpu+lower,
sizeof(uint64_t)*width, cudaMemcpyHostToDevice); // ...or cudaMemcpyDeviceToHost
}
为多个 GPU 启动核函数
通过使用相同的循环遍历和分块技术,我们可在多个 GPU 上启动核函数并处理数据块:
// ...Assume data has been allocated on host and for each GPU
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
const uint64_t lower = chunk_size*gpu;
const uint64_t upper = min(lower+chunk_size, num_entries);
const uint64_t width = upper-lower;
kernel<<<grid, block>>>(data_gpu[gpu], width); // Pass chunk of data for current GPU to work on.
}
在上面,使用深度优先的方法将一部分工作传递给每个GPU。在某些情况下,尤其是在数据量极高的情况下,使用宽度优先的方法可能更有意义。这种方法上的改变并不是需要额外的CUDA知识。不过,此stack overflow的回答提供了一些使用深度优先和宽度优先方法的CUDA代码示例。
多个GPU之间进行对等内存传输,以及在多个节点上使用多个GPU, 此超级计算会议演示文稿。
例子:
多个GPU使用默认流
#include <cstdint>
#include <iostream>
#include "helpers.cuh"
#include "encryption.cuh"
void encrypt_cpu(uint64_t * data, uint64_t num_entries,
uint64_t num_iters, bool parallel=true) {
#pragma omp parallel for if (parallel)
for (uint64_t entry = 0; entry < num_entries; entry++)
data[entry] = permute64(entry, num_iters);
}
__global__
void decrypt_gpu(uint64_t * data, uint64_t num_entries,
uint64_t num_iters) {
const uint64_t thrdID = blockIdx.x*blockDim.x+threadIdx.x;
const uint64_t stride = blockDim.x*gridDim.x;
for (uint64_t entry = thrdID; entry < num_entries; entry += stride)
data[entry] = unpermute64(data[entry], num_iters);
}
bool check_result_cpu(uint64_t * data, uint64_t num_entries,
bool parallel=true) {
uint64_t counter = 0;
#pragma omp parallel for reduction(+: counter) if (parallel)
for (uint64_t entry = 0; entry < num_entries; entry++)
counter += data[entry] == entry;
return counter == num_entries;
}
int main (int argc, char * argv[]) {
Timer timer;
Timer overall;
const uint64_t num_entries = 1UL << 26;
const uint64_t num_iters = 1UL << 10;
const bool openmp = true;
timer.start();
uint64_t * data_cpu;
cudaMallocHost(&data_cpu, sizeof(uint64_t)*num_entries);
// cudaMalloc (&data_gpu, sizeof(uint64_t)*num_entries);
timer.stop("allocate memory");
check_last_error();
timer.start();
encrypt_cpu(data_cpu, num_entries, num_iters, openmp);
timer.stop("encrypt data on CPU");
overall.start();
timer.start();
int num_gpus;
cudaGetDeviceCount(&num_gpus);
const uint64_t chunk_size = sdiv(num_entries, num_gpus);
uint64_t *data_gpu[num_gpus]; // One pointer for each GPU.
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
const uint64_t lower = chunk_size*gpu;
const uint64_t upper = min(lower+chunk_size, num_entries);
const uint64_t width = upper-lower;
cudaMalloc(&data_gpu[gpu], sizeof(uint64_t)*width); // Allocate chunk of data for current GPU.
cudaMemcpy(data_gpu[gpu], data_cpu+lower,
sizeof(uint64_t)*width, cudaMemcpyHostToDevice); // ...or cudaMemcpyDeviceToHost
}
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
const uint64_t lower = chunk_size*gpu;
const uint64_t upper = min(lower+chunk_size, num_entries);
const uint64_t width = upper-lower;
decrypt_gpu<<<32*80, 64>>>(data_gpu[gpu], width, num_iters); // Pass chunk of data for current GPU to work on.
}
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
const uint64_t lower = chunk_size*gpu;
const uint64_t upper = min(lower+chunk_size, num_entries);
const uint64_t width = upper-lower;
cudaMemcpy(data_cpu+lower, data_gpu[gpu],
sizeof(uint64_t)*width, cudaMemcpyDeviceToHost);
}
timer.stop("multi GPU times");
check_last_error();
overall.stop("total time on GPU");
check_last_error();
timer.start();
const bool success = check_result_cpu(data_cpu, num_entries, openmp);
std::cout << "STATUS: test "
<< ( success ? "passed" : "failed")
<< std::endl;
timer.stop("checking result on CPU");
timer.start();
cudaFreeHost(data_cpu);
// cudaFree (data_gpu);
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaFree(data_gpu[gpu]);
}
timer.stop("free memory");
check_last_error();
}
在上面代码,可以看到内存传输没有重叠。 为什么会这样?
代码既不使用非默认流,也不使用“cudaMemcpyAsync”存储复制。 因此,它们阻止了操作。
在多个 GPU上实现数据复制与计算的重叠
- 流与每个 GPU 设备是如何关联的
- 如何为多个 GPU 创建非默认流
- 如何在多个 GPU 上实现复制与计算的重叠
每个 GPU 都有各自的默认流。我们可以为当前处于活动状态的 GPU 设备创建、使用和销毁非默认流。切记不要在未与当前处于活动状态的 GPU 建立关联的流中启动核函数
为多个 GPU 创建多个非默认流
在多个 GPU 上使用多个非默认流时,与之前不同的是,我们不是简单地将流存储在数组中,而是将其存储于二维数组中,且数组中的每一行皆包含单个 GPU 的流:
cudaStream_t streams[num_gpus][num_streams]; // 2D array containing number of streams for each GPU.
// For each available GPU...
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
// ...set as active device...
cudaSetDevice(gpu);
for (uint64_t stream = 0; stream < num_streams; stream++)
// ...create and store its number of streams.
cudaStreamCreate(&streams[gpu][stream]);
}
多个 GPU 上多流的数据块大小
当在多个 GPU 上使用多个非默认流时,全局数据索引尤为棘手。为帮助实现索引,我们可以为单个流和整个 GPU 分别定义数据块大小。
// Each stream needs num_entries/num_gpus/num_streams data. We use round up division for
// reasons previously discussed.
const uint64_t stream_chunk_size = sdiv(sdiv(num_entries, num_gpus), num_streams);
// It will be helpful to also to have handy the chunk size for an entire GPU.
const uint64_t gpu_chunk_size = stream_chunk_size*num_streams;
为多个 GPU 的多个流分配显存
GPU 的显存并未分配给各个流,所以此处的分配操作看起来与之前的多 GPU 任务相似,我们只需注意数据块的大小是分配给整个 GPU 的而非其中一个流的即可:
```c
// For each GPU...
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
// ...set device as active...
cudaSetDevice(gpu);
// ...use a GPU chunk's worth of data to calculate indices and width...
const uint64_t lower = gpu_chunk_size*gpu;
const uint64_t upper = min(lower+gpu_chunk_size, num_entries);
const uint64_t width = upper-lower;
// ...allocate data.
cudaMalloc(&data_gpu[gpu], sizeof(uint64_t)*width);
}
在多个 GPU 的多个流上实现复制与计算的重叠
#include <cstdint>
#include <iostream>
#include "helpers.cuh"
#include "encryption.cuh"
void encrypt_cpu(uint64_t * data, uint64_t num_entries,
uint64_t num_iters, bool parallel=true) {
#pragma omp parallel for if (parallel)
for (uint64_t entry = 0; entry < num_entries; entry++)
data[entry] = permute64(entry, num_iters);
}
__global__
void decrypt_gpu(uint64_t * data, uint64_t num_entries,
uint64_t num_iters) {
const uint64_t thrdID = blockIdx.x*blockDim.x+threadIdx.x;
const uint64_t stride = blockDim.x*gridDim.x;
for (uint64_t entry = thrdID; entry < num_entries; entry += stride)
data[entry] = unpermute64(data[entry], num_iters);
}
bool check_result_cpu(uint64_t * data, uint64_t num_entries,
bool parallel=true) {
uint64_t counter = 0;
#pragma omp parallel for reduction(+: counter) if (parallel)
for (uint64_t entry = 0; entry < num_entries; entry++)
counter += data[entry] == entry;
return counter == num_entries;
}
int main (int argc, char * argv[]) {
Timer timer;
Timer overall;
const uint64_t num_entries = 1UL << 26;
const uint64_t num_iters = 1UL << 10;
const bool openmp = true;
timer.start();
uint64_t * data_cpu;
cudaMallocHost(&data_cpu, sizeof(uint64_t)*num_entries);
timer.stop("allocate memory");
check_last_error();
timer.start();
encrypt_cpu(data_cpu, num_entries, num_iters, openmp);
timer.stop("encrypt data on CPU");
int num_gpus;
cudaGetDeviceCount(&num_gpus);
uint64_t num_streams = 32;
uint64_t *data_gpu[num_gpus];
cudaStream_t streams[num_gpus][num_streams];
uint64_t gpu_chunk_size = sdiv(num_entries, num_gpus);
overall.start();
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
for (uint64_t s = 0; s < num_streams; s++) {
cudaStreamCreate(&streams[gpu][s]);
}
uint64_t gpu_lower = gpu_chunk_size* gpu;
uint64_t gpu_upper = min(gpu_lower+gpu_chunk_size, num_entries);
uint64_t gpu_width = gpu_upper-gpu_lower;
cudaMalloc(&data_gpu[gpu], sizeof(uint64_t)*gpu_width);
}
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
uint64_t gpu_lower = gpu_chunk_size * gpu;
uint64_t gpu_upper = min(gpu_lower+gpu_chunk_size, num_entries);
uint64_t gpu_width = gpu_upper - gpu_lower;
uint64_t s_chunk_size = sdiv(gpu_width, num_streams);
for (uint64_t s = 0; s < num_streams; s++) {
uint64_t s_offset = s * s_chunk_size;
uint64_t s_lower = gpu_lower + s_offset;
uint64_t s_upper = min(s_lower + s_chunk_size, gpu_upper);
uint64_t s_width = s_upper - s_lower;
cudaMemcpyAsync(data_gpu[gpu] + s_offset, data_cpu+s_lower,
sizeof(uint64_t)*s_width, cudaMemcpyHostToDevice, streams[gpu][s]);
decrypt_gpu<<<80*32, 64, 0, streams[gpu][s]>>>(data_gpu[gpu]+s_offset, s_width, num_iters);
cudaMemcpyAsync(data_cpu+s_lower, data_gpu[gpu] + s_offset,
sizeof(uint64_t)*s_width, cudaMemcpyDeviceToHost, streams[gpu][s]);
}
}
check_last_error();
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
for (uint64_t s = 0; s < num_streams; s++) {
cudaStreamSynchronize(streams[gpu][s]);
}
}
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
for (uint64_t s = 0; s < num_streams; s++) {
cudaStreamDestroy(streams[gpu][s]);
}
}
overall.stop("total time on GPU");
check_last_error();
timer.start();
bool success = true;
success = check_result_cpu(data_cpu, num_entries, openmp);
std::cout << "STATUS: test "
<< ( success ? "passed" : "failed")
<< std::endl;
timer.stop("checking result on CPU");
timer.start();
cudaFreeHost(data_cpu);
for (uint64_t gpu = 0; gpu < num_gpus; gpu++) {
cudaSetDevice(gpu);
cudaFree(data_gpu[gpu]);
}
timer.stop("free memory");
check_last_error();
}
还没有评论,来说两句吧...