ArrayList 源码分析

雨点打透心脏的1/2处 2022-03-28 07:40 509阅读 0赞

公众号原文:ArrayList 源码分析
博客原文:ArrayList 源码分析
以下源码分析使用的 Java 版本为 1.8

1. 概览

ArrayList 是基于数组实现的,继承 AbstractList, 实现了 List、RandomAccess、Cloneable、Serializable 接口,支持随机访问。

  1. java.util public class ArrayList<E> extends AbstractList<E>
  2. implements List<E>, RandomAccess, Cloneable, java.io.Serializable

2. Java Doc 关键点:

  • 实现List接口的动态数组,容量大小为 capacity,默认的容量大小 10,会自动扩容
  • 可包含空元素 null
  • size, isEmpty, get, set, iterator, and listIterator 等操作的复杂度为 O(1),The add operation runs in amortized constant time, that is, adding n elements requires O(n) time,其它操作为线性时间
  • 非线程安全,多线程环境下必须在外部增加同步限制,或者使用包装对象 List list = Collections.synchronizedList(new ArrayList(...));
  • 快速失败:在使用迭代器时,调用迭代器的添加、修改、删除方法,将抛出 ConcurrentModificationException 异常,但是快速失败行为不是硬保证的,只是尽最大努力

3. 成员属性

当添加第一个元素时,elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA 的任何空ArrayList都将扩展为默认的capacity

  1. private static final int DEFAULT_CAPACITY = 10; // 默认容量大小
  2. private static final Object[] EMPTY_ELEMENTDATA = { }; // ArrayList空实例共享的一个空数组
  3. private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = { }; // ArrayList空实例共享的一个空数组,用于默认大小的空实例。与 EMPTY_ELEMENTDATA 分开,这样就可以了解当添加第一个元素时需要创建多大的空间
  4. transient Object[] elementData; // 真正存储ArrayList中的元素的数组
  5. private int size; // 存储ArrayList的大小,注意不是elementData的长度
  6. private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // 数组的最大长度
  7. protected transient int modCount = 0; //AbstractList类的,表示 elementData在结构上被修改的次数,每次add或者remove它的值都会加1

4. 构造方法

  1. // 无参构造方法,默认初始容量10
  2. public ArrayList() {
  3. this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
  4. }
  5. // 提供初始容量的构造方法
  6. public ArrayList(int initialCapacity) {
  7. if (initialCapacity > 0) {
  8. this.elementData = new Object[initialCapacity];
  9. } else if (initialCapacity == 0) {
  10. this.elementData = EMPTY_ELEMENTDATA;
  11. } else {
  12. throw new IllegalArgumentException("Illegal Capacity: "+
  13. initialCapacity);
  14. }
  15. }
  16. // 通过一个容器来初始化
  17. public ArrayList(Collection<? extends E> c) {
  18. elementData = c.toArray();
  19. if ((size = elementData.length) != 0) { // c.toArray 返回的可能不是 Object[]
  20. if (elementData.getClass() != Object[].class)
  21. elementData = Arrays.copyOf(elementData, size, Object[].class);
  22. } else {
  23. this.elementData = EMPTY_ELEMENTDATA; // replace with empty array.
  24. }
  25. }

5. 添加元素与扩容

添加元素时使用 ensureCapacityInternal() 方法来保证容量足够,size + 1 为最少需要的空间大小,如果elementData的长度不够时,需要使用 grow() 方法进行扩容

  1. // 添加一个元素
  2. public boolean add(E e) {
  3. ensureCapacityInternal(size + 1); // Increments modCount!!
  4. elementData[size++] = e;
  5. return true;
  6. }
  7. // 计算最少需要的容量
  8. private static int calculateCapacity(Object[] elementData, int minCapacity) {
  9. if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
  10. // 默认的空实例第一次添加元素时,使用默认的容量大小与minCapacity的最大值
  11. return Math.max(DEFAULT_CAPACITY, minCapacity);
  12. }
  13. return minCapacity;
  14. }
  15. private void ensureCapacityInternal(int minCapacity) {
  16. ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
  17. }
  18. private void ensureExplicitCapacity(int minCapacity) {
  19. modCount++;
  20. if (minCapacity - elementData.length > 0) // 需要的容量大于elementData的长度
  21. grow(minCapacity); // 进行扩容
  22. }

扩容:当新容量小于等于 MAX_ARRAY_SIZE 时,新容量的大小为 oldCapacity + (oldCapacity >> 1)minCapacity 之间的较大值 ,也就是旧容量的 1.5 倍与 minCapacity 之间的较大值

  1. private void grow(int minCapacity) {
  2. int oldCapacity = elementData.length; // 原本的容量
  3. int newCapacity = oldCapacity + (oldCapacity >> 1); // 新的容量
  4. if (newCapacity - minCapacity < 0)
  5. newCapacity = minCapacity;
  6. if (newCapacity - MAX_ARRAY_SIZE > 0)
  7. newCapacity = hugeCapacity(minCapacity);
  8. elementData = Arrays.copyOf(elementData, newCapacity);
  9. }
  10. private static int hugeCapacity(int minCapacity) {
  11. if (minCapacity < 0) // overflow
  12. throw new OutOfMemoryError();
  13. return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;
  14. }

最后调用 Arrays.copyOf 复制原数组,将 elementData 赋值为得到的新数组。由于数组复制代价较高,所以建议在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数

  1. public class Arrays {
  2. public static <T> T[] copyOf(T[] original, int newLength) {
  3. return (T[]) copyOf(original, newLength, original.getClass());
  4. }
  5. public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
  6. @SuppressWarnings("unchecked")
  7. T[] copy = ((Object)newType == (Object)Object[].class)
  8. ? (T[]) new Object[newLength] : (T[]) Array.newInstance(newType.getComponentType(), newLength);
  9. System.arraycopy(original, 0, copy, 0, Math.min(original.length, newLength));
  10. return copy;
  11. }
  12. //...
  13. }

通过 addAll 添加一个集合中所有元素时的扩容:至少需要的容量为两个集合的长度之和,同样是通过 ensureCapacityInternal() 来保证容量是足够的,然后调用 System.arraycopy 将要添加的集合中的元素复制到原集合已有元素的后面

  1. public boolean addAll(Collection<? extends E> c) {
  2. Object[] a = c.toArray();
  3. int numNew = a.length;
  4. ensureCapacityInternal(size + numNew); // Increments modCount
  5. System.arraycopy(a, 0, elementData, size, numNew); // 复制元素到原数组尾部
  6. size += numNew;
  7. return numNew != 0;
  8. }

6. 删除元素

删除指定下标的元素时,如果下标没有越界,则取出下标对应的值,然后将数组中该下标后面的元素都往前挪1位,需要挪的元素数量是 size - index - 1,时间复杂度为 O(n),所以删除元素的代价挺高

  1. public E remove(int index) {
  2. rangeCheck(index); // 检查下标是否在数组的长度范围内
  3. modCount++;
  4. E oldValue = elementData(index); // 下标为index的值
  5. int numMoved = size - index - 1; // 需要移动的元素数量
  6. if (numMoved > 0)
  7. System.arraycopy(elementData, index+1, elementData, index, numMoved);
  8. elementData[--size] = null; // clear to let GC do its work
  9. return oldValue;
  10. }
  11. private void rangeCheck(int index) {
  12. if (index >= size)
  13. throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
  14. }

删除在指定集合中的所有元素 removeAll,删除不在指定集合中的所有元素 retainAll

这两者都是通过 batchRemove 来批量删除

  1. // 删除在指定集合中的所有元素
  2. public boolean removeAll(Collection<?> c) {
  3. Objects.requireNonNull(c); // c 不能为null
  4. return batchRemove(c, false);
  5. }
  6. // 删除不在指定集合中的所有元素,也就是只保留指定集合中的元素,其它的都删除掉
  7. public boolean retainAll(Collection<?> c) {
  8. Objects.requireNonNull(c);
  9. return batchRemove(c, true);
  10. }
  11. // 批量删除
  12. private boolean batchRemove(Collection<?> c, boolean complement) {
  13. final Object[] elementData = this.elementData;
  14. int r = 0, w = 0; // r为当前下标,w为当前需要保留的元素的数量(或者说是下一个需保留元素的下标)
  15. boolean modified = false;
  16. try {
  17. for (; r < size; r++)
  18. if (c.contains(elementData[r]) == complement) // 判断元素 elementData[r] 是否需要删除
  19. elementData[w++] = elementData[r];
  20. } finally {
  21. // r != size 的情况可能是 c.contains() 抛出了异常,将 r 之后的元素复制到 w 之后
  22. if (r != size) {
  23. System.arraycopy(elementData, r, elementData, w, size - r);
  24. w += size - r;
  25. }
  26. if (w != size) {
  27. // w 之后的元素设置为 null 以让 GC 回收
  28. for (int i = w; i < size; i++)
  29. elementData[i] = null;
  30. modCount += size - w;
  31. size = w;
  32. modified = true;
  33. }
  34. }
  35. return modified;
  36. }

删除第一个值为指定值的元素 remove(Object o),参数 o 可以为 null

fastRemove(int index)remove(int index) 几乎一样,只不过不返回被删除的元素

  1. public boolean remove(Object o) {
  2. if (o == null) {
  3. for (int index = 0; index < size; index++)
  4. if (elementData[index] == null) {
  5. fastRemove(index);
  6. return true;
  7. }
  8. } else {
  9. for (int index = 0; index < size; index++)
  10. if (o.equals(elementData[index])) {
  11. fastRemove(index);
  12. return true;
  13. }
  14. }
  15. return false;
  16. }
  17. private void fastRemove(int index) {
  18. modCount++;
  19. int numMoved = size - index - 1;
  20. if (numMoved > 0)
  21. System.arraycopy(elementData, index+1, elementData, index,
  22. numMoved);
  23. elementData[--size] = null; // clear to let GC do its work
  24. }

7. 遍历

ArrayList 支持三种方式:

  • for循环下标遍历
  • 迭代器(Iterator和ListIterator)
  • foreach 语句

迭代器 Iterator 和 ListIterator 的主要区别:

ArrayList 的迭代器 Iterator 和 ListIterator 在《设计模式 | 迭代器模式及典型应用》这篇文章中有过详细介绍,这里只做一个小结

  • ListIterator 有 add() 方法,可以向List中添加对象,而 Iterator 不能
  • ListIterator 和 Iterator 都有 hasNext() 和 next() 方法,可以实现顺序向后遍历,但是 ListIterator 有 hasPrevious() 和 previous() 方法,可以实现逆向(顺序向前)遍历。Iterator 就不可以。
  • ListIterator 可以定位当前的索引位置,nextIndex() 和 previousIndex() 可以实现。Iterator 没有此功能。
  • 都可实现删除对象,但是 ListIterator 可以实现对象的修改,set() 方法可以实现。Iierator 仅能遍历,不能修改

foreach 循环:

foreach 循环涉及到一个 Consumer 接口,接收一个泛型的参数T,当调用 accept 方法时,Stream流中将对 accept 的参数做一系列的操作

  1. public void forEach(Consumer<? super E> action) {
  2. Objects.requireNonNull(action);
  3. final int expectedModCount = modCount; // 记录当前的 modCount
  4. @SuppressWarnings("unchecked")
  5. final E[] elementData = (E[]) this.elementData;
  6. final int size = this.size;
  7. for (int i=0; modCount == expectedModCount && i < size; i++) {
  8. action.accept(elementData[i]);
  9. }
  10. if (modCount != expectedModCount) {
  11. throw new ConcurrentModificationException();
  12. }
  13. }

8. 序列化

ArrayList 有两个属性被 transient 关键字 修饰,transient 关键字 的作用:让某些被修饰的成员属性变量不被序列化

  1. transient Object[] elementData;
  2. protected transient int modCount = 0;

为什么最为重要的数组元素要用 transient 修饰呢?

跟Java的序列化机制有关,这里列出Java序列化机制的几个要点:

  • 需要序列化的类必须实现java.io.Serializable接口,否则会抛出NotSerializableException异常
  • 若没有显示地声明一个serialVersionUID变量,Java序列化机制会根据编译时的class自动生成一个serialVersionUID作为序列化版本比较(验证一致性),如果检测到反序列化后的类的serialVersionUID和对象二进制流的serialVersionUID不同,则会抛出异常
  • Java的序列化会将一个类包含的引用中所有的成员变量保存下来(深度复制),所以里面的引用类型必须也要实现java.io.Serializable接口
  • 当某个字段被声明为transient后,默认序列化机制就会忽略该字段,反序列化后自动获得0或者null值
  • 静态成员不参与序列化
  • 每个类可以实现readObject、writeObject方法实现自己的序列化策略,即使是transient修饰的成员变量也可以手动调用ObjectOutputStream的writeInt等方法将这个成员变量序列化。
  • 任何一个readObject方法,不管是显式的还是默认的,它都会返回一个新建的实例,这个新建的实例不同于该类初始化时创建的实例
  • 每个类可以实现private Object readResolve()方法,在调用readObject方法之后,如果存在readResolve方法则自动调用该方法,readResolve将对readObject的结果进行处理,而最终readResolve的处理结果将作为readObject的结果返回。readResolve的目的是保护性恢复对象,其最重要的应用就是保护性恢复单例、枚举类型的对象

所以问题的答案是:ArrayList 不想用Java序列化机制的默认处理来序列化 elementData 数组,而是通过 readObject、writeObject 方法自定义序列化和反序列化策略。

问题又来了,为什么不用Java序列化机制的默认处理来序列化 elementData 数组呢

答案是因为效率问题,如果用默认处理来序列化的话,如果 elementData 的长度有100,但是实际只用了50,其实剩余的50是可以不用序列化的,这样可以提高序列化和反序列化的效率,节省空间。

现在来看 ArrayList 中自定义的序列化和反序列化策略

  1. private static final long serialVersionUID = 8683452581122892189L;
  2. private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{
  3. int expectedModCount = modCount;
  4. s.defaultWriteObject(); // 默认的序列化策略,序列化其它的字段
  5. s.writeInt(size); // 实际用的长度,而不是容量
  6. for (int i=0; i<size; i++) { // 只序列化数组的前 size 个对象
  7. s.writeObject(elementData[i]);
  8. }
  9. if (modCount != expectedModCount) {
  10. throw new ConcurrentModificationException();
  11. }
  12. }
  13. private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
  14. elementData = EMPTY_ELEMENTDATA;
  15. // Read in size, and any hidden stuff
  16. s.defaultReadObject();
  17. s.readInt(); // ignored
  18. if (size > 0) {
  19. int capacity = calculateCapacity(elementData, size);
  20. SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
  21. ensureCapacityInternal(size);
  22. Object[] a = elementData;
  23. for (int i=0; i<size; i++) {
  24. a[i] = s.readObject();
  25. }
  26. }
  27. }

9. 快速失败(fail-fast)

modCount 用来记录 ArrayList 结构发生变化的次数,如果一个动作前后 modCount 的值不相等,说明 ArrayList 被其它线程修改了

如果在创建迭代器之后的任何时候以任何方式修改了列表(增加、删除、修改),除了通过迭代器自己的remove 或 add方法,迭代器将抛出 ConcurrentModificationException 异常

需要注意的是:这里异常的抛出条件是检测到 modCount != expectedmodCount,如果并发场景下一个线程修改了modCount值时另一个线程又 “及时地” 修改了expectedmodCount值,则异常不会抛出。所以不能依赖于这个异常来检测程序的正确性。

  1. private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{
  2. int expectedModCount = modCount; // 记录下当前的 modCount
  3. // 一些操作之后....
  4. if (modCount != expectedModCount) { // 比较现在与之前的 modCount,不相等表示在中间过程中被修改了
  5. throw new ConcurrentModificationException();
  6. }
  7. }
  8. private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{
  9. int expectedModCount = modCount;
  10. // 一些操作之后....
  11. if (modCount != expectedModCount) {
  12. throw new ConcurrentModificationException();
  13. }
  14. }
  15. public void forEach(Consumer<? super E> action) {
  16. final int expectedModCount = modCount;
  17. // 一些操作之后....
  18. if (modCount != expectedModCount) {
  19. throw new ConcurrentModificationException();
  20. }
  21. }
  22. public boolean removeIf(Predicate<? super E> filter) {
  23. final int expectedModCount = modCount;
  24. // 一些操作之后....
  25. if (modCount != expectedModCount) {
  26. throw new ConcurrentModificationException();
  27. }
  28. }
  29. public void replaceAll(UnaryOperator<E> operator) {
  30. final int expectedModCount = modCount;
  31. // 一些操作之后....
  32. if (modCount != expectedModCount) {
  33. throw new ConcurrentModificationException();
  34. }
  35. modCount++; // 修改了要加一
  36. }
  37. public void sort(Comparator<? super E> c) {
  38. final int expectedModCount = modCount;
  39. // 一些操作之后....
  40. if (modCount != expectedModCount) {
  41. throw new ConcurrentModificationException();
  42. }
  43. modCount++;
  44. }
  45. // 内部迭代器
  46. private class Itr implements Iterator<E> {
  47. public void forEachRemaining(Consumer<? super E> consumer) {
  48. checkForComodification();
  49. }
  50. final void checkForComodification() {
  51. if (modCount != expectedModCount)
  52. throw new ConcurrentModificationException();
  53. }
  54. }

后记

欢迎评论、转发、分享,您的支持是我最大的动力

更多内容可访问我的个人博客:http://laijianfeng.org

关注【小旋锋】微信公众号,及时接收博文推送

关注\_小旋锋\_微信公众号

发表评论

表情:
评论列表 (有 0 条评论,509人围观)

还没有评论,来说两句吧...

相关阅读

    相关 ArrayList分析

    ArrayList是一种最常用的集合类,底层数据结构是数组,提供动态扩展数组长度的特性,允许元素的值为null。ArrayList是一种非线程安全的集合类,若要在多线程的环境,

    相关 ArrayList分析

    构造函数(有参和无参): 无参:有个被transient关键字修饰的elementData的Object类型长度为0的数组。 有参:参数的含义就是这个集合的含量,在Arra