javap 字节码指令

- 日理万妓 2022-02-27 23:50 412阅读 0赞

转:原文:https://blog.csdn.net/w372426096/article/details/81664431

建议看原文,我粘贴的后面字节码指令集排版不太好。

一、javap命令简述

javap是jdk自带的反解析工具。它的作用就是根据class字节码文件,反解析出当前类对应的code区(汇编指令)、本地变量表、异常表和代码行偏移量映射表、常量池等等信息。
当然这些信息中,有些信息(如本地变量表、指令和代码行偏移量映射表、常量池中方法的参数名称等等)需要在使用javac编译成class文件时,指定参数才能输出,比如,你直接javac xx.java,就不会在生成对应的局部变量表等信息,如果你使用javac -g xx.java就可以生成所有相关信息了。如果你使用的eclipse,则默认情况下,eclipse在编译时会帮你生成局部变量表、指令和代码行偏移量映射表等信息的。
通过反编译生成的汇编代码,我们可以深入的了解java代码的工作机制。比如我们可以查看i++;这行代码实际运行时是先获取变量i的值,然后将这个值加1,最后再将加1后的值赋值给变量i。
通过局部变量表,我们可以查看局部变量的作用域范围、所在槽位等信息,甚至可以看到槽位复用等信息。

javap的用法格式:
javap
其中classes就是你要反编译的class文件。
在命令行中直接输入javap或javap -help可以看到javap的options有如下选项:

-hep —hep -? 输出此用法消息
-version 版本信息,其实是当前javap所在jdk的版本信息,不是cass在哪个jdk下生成的。
-v -verbose 输出附加信息(包括行号、本地变量表,反汇编等详细信息)
- 输出行号和本地变量表
-pubic 仅显示公共类和成员
-protected 显示受保护的/公共类和成员
-package 显示程序包/受保护的/公共类 和成员 (默认)
-p -private 显示所有类和成员
-c 对代码进行反汇编
-s 输出内部类型签名
-sysinfo 显示正在处理的类的系统信息 (路径, 大小, 日期, MD5 散列)
-constants 显示静态最终常量
-casspath &t;path> 指定查找用户类文件的位置
-bootcasspath &t;path> 覆盖引导类文件的位置

一般常用的是-v -l -c三个选项。
javap -v classxx,不仅会输出行号、本地变量表信息、反编译汇编代码,还会输出当前类用到的常量池等信息。
javap -l 会输出行号和本地变量表信息。
javap -c 会对当前class字节码进行反编译生成汇编代码。
查看汇编代码时,需要知道里面的jvm指令,可以参考官方文档:
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
另外通过jclasslib工具也可以看到上面这些信息,而且是可视化的,效果更好一些。
二、javap测试及内容详解

前面已经介绍过javap输出的内容有哪些,东西比较多,这里主要介绍其中code区(汇编指令)、局部变量表和代码行偏移映射三个部分。
如果需要分析更多的信息,可以使用javap -v进行查看。
另外,为了更方便理解,所有汇编指令不单拎出来讲解,而是在反汇编代码中以注释的方式讲解下面写段代码测试一下:
例子1:分析一下下面的代码反汇编之后结果:

public class TestDate {

private int count = 0;

public static void main(String[] args) {

TestDate testDate = new TestDate();

testDate.test1();

}

public void test1(){

Date date = new Date();

String name1 = “wangerbei”;

test2(date,name1);

System.out.println(date+name1);

}

public void test2(Date dateP,String name2){

dateP = null;

name2 = “zhangsan”;

}

public void test3(){

count++;

}

public void test4(){

int a = 0;

{

int b = 0;

b = a+1;

}

int c = a+1;

}

}

上面代码通过JAVAC -g 生成class文件,然后通过javap命令对字节码进行反汇编:
$ javap -c -l TestDate
得到下面内容(指令等部分是我参照着官方文档总结的):

Warning: Binary file TestDate contains com.justest.test.TestDate
Compiled from “TestDate.java”
public class com.justest.test.TestDate {
//默认的构造方法,在构造方法执行时主要完成一些初始化操作,包括一些成员变量的初始化赋值等操作
public com.justest.test.TestDate();
Code:
0: aload_0 //从本地变量表中加载索引为0的变量的值,也即this的引用,压入栈
1: invokespecial #10 //出栈,调用java/lang/Object.”“:()V 初始化对象
//,就是this指定的对象的init()方法完成初始化
4: aload_0 // 4到6表示,调用this.count = 0,也即为count复制为0。这里this引用入栈
5: iconst_0 //将常量0,压入到操作数栈
6: putfield //出栈前面压入的两个值(this引用,常量值0), 将0取出,并赋值给count
9: return
//指令与代码行数的偏移对应关系,每一行第一个数字对应代码行数,第二个数字对应前面code中指令前面的数字
LineNumberTable:
line 5: 0
line 7: 4
line 5: 9
//局部变量表,start+length表示这个变量在字节码中的生命周期起始和结束的偏移位置(this生命周期从头0到结尾10)
//,slot就是这个变量在局部变量表中的槽位(槽位可复用),name就是变量名称,Signatur局部变量类型描述
LocalVariableTable:
Start Length Slot Name Signature
0 10 0 this Lcom/justest/test/TestDate;
public static void main(java.lang.String[]);
Code:
// new指令,创建一个class com/justest/test/TestDate对象,new指令并不能完全创建一个对象
//,对象只有在初,只有在调用初始化方法完成后(也就是调用了invokespecial指令之后),对象才创建成功,
0: new //创建对象,并将对象引用压入栈
3: dup //将操作数栈定的数据复制一份,并压入栈,此时栈中有两个引用值
4: invokespecial #20 //pop出栈引用值,调用其构造函数,完成对象的初始化
7: astore_1 //pop出栈引用值,将其(引用)赋值给局部变量表中的变量testDate
8: aload_1 //将testDate的引用值压入栈,因为testDate.test1();调用了testDate
//,这里使用aload_1从局部变量表中获得对应的变量testDate的值并压入操作数栈
9: invokevirtual #21 // Method test1:()V 引用出栈,调用testDate的test1()方法
12: return //整个main方法结束返回
LineNumberTable:
line 10: 0
line 11: 8
line 12: 12
//局部变量表,testDate只有在创建完成并赋值后,才开始声明周期
LocalVariableTable:
Start Length Slot Name Signature
0 13 0 args [Ljava/lang/String;
8 5 1 testDate Lcom/justest/test/TestDate;
public void test1();
Code:
0: new #27 // 0到7创建Date对象,并赋值给date变量
3: dup
4: invokespecial #29 // Method java/util/Date.”“:()V
7: astore_1
8: ldc #30 // String wangerbei,将常量“wangerbei”压入栈
10: astore_2 //将栈中的“wangerbei”pop出,赋值给name1
11: aload_0 //11到14,对应test2(date,name1);默认前面加this.
12: aload_1 //从局部变量表中取出date变量
13: aload_2 //取出name1变量
14: invokevirtual #32 // Method test2: (Ljava/util/Date;Ljava/lang/String;)V 调用test2方法
// 17到38对应System.out.println(date+name1);
17: getstatic #36 // Field java/lang/System.out:Ljava/io/PrintStream; //20到35是jvm中的优化手段,多个字符串变量相加
//,不会两两创建一个字符串对象
//,而使用StringBuilder来创建一个对象
20: new #42 // class java/lang/StringBuilder
23: dup
24: invokespecial #44 // Method java/lang/StringBuilder.”“:()V
27: aload_1
28: invokevirtual #45 // Method java/lang/StringBuilder.append:(Ljava/lang/Object;)Ljava/lang/StringBuilder;
31: aload_2
32: invokevirtual #49 // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
35: invokevirtual #52 // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
38: invokevirtual #56 // Method java/io/PrintStream.println:(Ljava/lang/String;)V invokevirtual指令表示基于类调用方法
41: return
LineNumberTable:
line 15: 0
line 16: 8
line 17: 11
line 18: 17
line 19: 41
LocalVariableTable:
Start Length Slot Name Signature
0 42 0 this Lcom/justest/test/TestDate;
8 34 1 date Ljava/util/Date;
11 31 2 name1 Ljava/lang/String;
public void test2(java.util.Date, java.lang.String);
Code:
0: aconst_null //将一个null值压入栈
1: astore_1 //将null赋值给dateP
2: ldc #66 // String zhangsan 从常量池中取出字符串“zhangsan”压入栈中
4: astore_2 //将字符串赋值给name2
5: return
LineNumberTable:
line 22: 0
line 23: 2
line 24: 5
LocalVariableTable:
Start Length Slot Name Signature
0 6 0 this Lcom/justest/test/TestDate;
0 6 1 dateP Ljava/util/Date;
0 6 2 name2 Ljava/lang/String;
public void test3();
Code:
0: aload_0 //取出this,压入栈
1: dup //复制操作数栈栈顶的值,并压入栈,此时有两个this对象引用值在操作数组栈
2: getfield #12// Field count:I this出栈,并获取其count字段,然后压入栈
//,此时栈中有一个this和一个count的值
5: iconst_1 //取出一个int常量1,压入操作数栈
6: iadd // 从栈中取出count和1,将count值和1相加,结果入栈
7: putfield #12 // Field count:I 一次弹出两个,第一个弹出的是上一步计算值
//,第二个弹出的this,将值赋值给this的count字段
10: return
LineNumberTable:
line 27: 0
line 28: 10
LocalVariableTable:
Start Length Slot Name Signature
0 11 0 this Lcom/justest/test/TestDate;
public void test4();
Code:
0: iconst_0
1: istore_1
2: iconst_0
3: istore_2
4: iload_1
5: iconst_1
6: iadd
7: istore_2
8: iload_1
9: iconst_1
10: iadd
11: istore_2
12: return LineNumberTable: line
33: 0 line
35: 2 line
36: 4 line
38: 8 line
39: 12
//看下面,b和c的槽位slot一样,这是因为b的作用域就在方法块中,方法块结束
//,局部变量表中的槽位就被释放,后面的变量就可以复用这个槽位
LocalVariableTable:
Start Length Slot Name Signature
0 13 0 this Lcom/justest/test/TestDate;
2 11 1 a I
4 4 2 b I
12 1 2 c I
}

例子2:下面一个例子

先有一个User类:

public class User {
private String name;
private int age;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}

然后写一个操作User对象的测试类:

public class TestUser {

private int count;

public void test(int a){

count = count + a;

}

public User initUser(int age,String name){

User user = new User();

user.setAge(age);

user.setName(name);

return user;

}

public void changeUser(User user,String newName){

user.setName(newName);

}

}

先javac -g 编译成class文件。

然后对TestUser类进行反汇编:

$ javap -c -l TestUser

得到反汇编结果如下:

Warning: Binary file TestUser contains com.justest.test.TestUser
Compiled from “TestUser.java”
public class com.justest.test.TestUser {
//默认的构造函数
public com.justest.test.TestUser();

Code:
0: aload_0
1: invokespecial #10 // Method java/lang/Object.”“:()V
4: return
LineNumberTable:
line 3: 0

LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Lcom/justest/test/TestUser;
public void test(int);
Code:
0: aload_0 //取this对应的对应引用值,压入操作数栈
1: dup //复制栈顶的数据,压入栈,此时栈中有两个值,都是this对象引用
2: getfield #18 // 引用出栈,通过引用获得对应count的值,并压入栈
5: iload_1 //从局部变量表中取得a的值,压入栈中
6: iadd //弹出栈中的count值和a的值,进行加操作,并将结果压入栈
7: putfield #18 // 经过上一步操作后,栈中有两个值,栈顶为上一步操作结果,栈顶下面是this引用,这一步putfield指令,用于将栈顶的值赋值给引用对象的count字段
10: return //return void
LineNumberTable:
line 8: 0
line 9: 10
LocalVariableTable:
Start Length Slot Name Signature
0 11 0 this Lcom/justest/test/TestUser;
0 11 1 a I
public com.justest.test.User initUser(int, java.lang.String);
Code:
0: new #23 // class com/justest/test/User 创建User对象,并将引用压入栈
3: dup //复制栈顶值,再次压入栈,栈中有两个User对象的地址引用 4: invokespecial #25 // Method com/justest/test/User.”“:()V 调用user对象初始化
7: astore_3 //从栈中pop出User对象的引用值,并赋值给局部变量表中user变量
8: aload_3 //从局部变量表中获得user的值,也就是User对象的地址引用,压入栈中
9: iload_1 //从局部变量表中获得a的值,并压入栈中,注意aload和iload的区别,一个取值是对象引用,一个是取int类型数据
10: invokevirtual #26 // Method com/justest/test/User.setAge:(I)V 操作数栈pop出两个值,一个是User对象引用,一个是a的值,调用setAge方法,并将a的值传给这个方法,setAge操作的就是堆中对象的字段了
13: aload_3 //同7,压入栈 14: aload_2 //从局部变量表取出name,压入栈
15: invokevirtual #29 //MethodUser.setName:(Ljava/lang/String;)V 操作数栈pop出两个值,一个是User对象引用,一个是name的值,调用setName方法,并将a的值传给这个方法,setName操作的就是堆中对象的字段了
18: aload_3 //从局部变量取出User引用,压入栈
19: areturn //areturn指令用于返回一个对象的引用,也就是上一步中User的引用,这个返回值将会被压入调用当前方法的那个方法的栈中objectref is popped from the operand stack of the current frame ([§2.6](https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html\#jvms-2.6)) and pushed onto the operand stack of the frame of the invoker
LineNumberTable:
line 12: 0
line 13: 8
line 14: 13
line 15: 18
LocalVariableTable:
Start Length Slot Name Signature
0 20 0 this Lcom/justest/test/TestUser;
0 20 1 age I
0 20 2 name Ljava/lang/String;
8 12 3 user Lcom/justest/test/User;
public void changeUser(com.justest.test.User, java.lang.String);
Code:
0: aload_1 //局部变量表中取出this,也即TestUser对象引用,压入栈 1: aload_2 //局部变量表中取出newName,压入栈
2: invokevirtual #29 // Method User.setName:(Ljava/lang/String;)V pop出栈newName值和TestUser引用,调用其setName方法,并将newName的值传给这个方法
5: return

LineNumberTable:
line 19: 0
line 20: 5
LocalVariableTable:
Start Length Slot Name Signature
0 6 0 this Lcom/justest/test/TestUser;
0 6 1 user Lcom/justest/test/User;
0 6 2 newName Ljava/lang/String;
public static void main(java.lang.String[]);
Code:
0: new #1 // class com/justest/test/TestUser 创建TestUser对象,将引用压入栈
3: dup //复制引用,压入栈
4: invokespecial #43 // Method ““:()V 引用值出栈,调用构造方法,对象初始化
7: astore_1 //引用值出栈,赋值给局部变量表中变量tu
8: aload_1 //取出tu值,压入栈
9: bipush 10 //将int值10压入栈
11: ldc #44 // String wangerbei 从常量池中取出“wangerbei” 压入栈
13: invokevirtual #46 // Method initUser(ILjava/lang/String;)Lcom/justest/test/User; 调用tu的initUser方法,并返回User对象 ,出栈三个值:tu引用,10和“wangerbei”,并且initUser方法的返回值,即User的引用,也会被压入栈中,参考前面initUser中的areturn指令
16: astore_2 //User引用出栈,赋值给user变量
17: aload_1 //取出tu值,压入栈
18: aload_2 //取出user值,压入栈
19: ldc #48 // String lisi 从常量池中取出“lisi”压入栈
21: invokevirtual #50 // Method changeUser:(Lcom/justest/test/User;Ljava/lang/String;)V 调用tu的changeUser方法,并将user引用和lisi传给这个方法
24: return //return void
LineNumberTable:
line 23: 0
line 24: 8
line 25: 17
line 26: 24
LocalVariableTable:
Start Length Slot Name Signature
0 25 0 args [Ljava/lang/String;
8 17 1 tu Lcom/justest/test/TestUser;
17 8 2 user Lcom/justest/test/User;
}

三、总结

1、通过javap命令可以查看一个java类反汇编、常量池、变量表、指令代码行号表等等信息。

2、平常,我们比较关注的是java类中每个方法的反汇编中的指令操作过程,这些指令都是顺序执行的,可以参考官方文档查看每个指令的含义,很简单:

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html\#jvms-6.5.areturn

3、通过对前面两个例子代码反汇编中各个指令操作的分析,可以发现,一个方法的执行通常会涉及下面几块内存的操作:

(1)java栈中:局部变量表、操作数栈。这些操作基本上都值操作。
(2)java堆。通过对象的地址引用去操作。
(3)常量池。
(4)其他如帧数据区、方法区(jdk1.8之前,常量池也在方法区)等部分,测试中没有显示出来,这里说明一下。

在做值相关操作时:
一个指令,可以从局部变量表、常量池、堆中对象、方法调用、系统调用中等取得数据,这些数据(可能是指,可能是对象的引用)被压入操作数栈。
一个指令,也可以从操作数数栈中取出一到多个值(pop多次),完成赋值、加减乘除、方法传参、系统调用等等操作。
扩展:
JVM字节码之整型入栈指令(iconst、bipush、sipush、ldc)

JVM中int类型数值采用何种指令入栈的,根据int值范围JVM入栈字节码指令就分为4类,下面分别介绍下这四类指令。

当int取值-1~5采用iconst指令,取值-128~127采用bipush指令,取值-32768~32767采用sipush指令,取值-2147483648~2147483647采用 ldc 指令。
iconst

当int取值-1~5时,JVM采用iconst指令将常量压入栈中。
定义Test.java文件

public static void main(String[] args) {

int i = 5;

int j = -1;

}

查看class文件

public static void main(java.lang.String[]);

Code:

0: iconst_5

1: istore_1

2: iconst_m1

3: istore_2

4: return

}

分析class文件,int取值0~5时JVM采用iconst_0、iconst_1、iconst_2、iconst_3、iconst_4、iconst_5指令将常量压入栈中,取值-1时采用iconst_m1指令将常量压入栈中。
bipush

当int取值-128~127时,JVM采用bipush指令将常量压入栈中。
定义Test.java文件

public static void main(String[] args) {

int i = 127;

}

查看class文件

public static void main(java.lang.String[]);

Code:

0: bipush 127

2: istore_1

3: return

}

可以看到上面代码第三行是采用bipush指令将常量127压入栈中。
sipush

当int取值-32768~32767时,JVM采用sipush指令将常量压入栈中。
定义Test.java文

public static void main(String[] args) {

int i = 32767;

}

查看class文

public static void main(java.lang.String[]);

Code:

0: sipush 32767

3: istore_1

4: return

}

可以看到上面代码第三行是采用sipush指令将常量32767压入栈中。
ldc

当int取值-2147483648~2147483647时,JVM采用ldc指令将常量压入栈中。
定义Test.java文

public static void main(String[] args) {

int i = Integer.MAX_VALUE;

}

查看class文件

public static void main(java.lang.String[]);

Code:

0: ldc #2; //int 2147483647

2: istore_1

3: return

}

可以看到上面代码第三行是采用ldc指令将2147483647常量压入栈中,需要注意的是ldc指令是从常量池中获取值的,也就是说在这段范围(-2147483648~2147483647)内的int值是存储在常量池中的。
JVM字节码之简单解读

public static void main(String[] args) {

int i = 100;

int j = 200 + i - 100;

int z = j++;

System.out.println(z+i);

}

上面源码执行之后的结果是300,下面我们就通过分析class来看看结果是怎么得来的。

Class字节码

public static void main(java.lang.String[]);

Code:

Stack=3, Locals=4, Args_size=1

0: bipush 100

2: istore_1

3: sipush 200

6: iload_1

7: iadd

8: bipush 100

10: isub

11: istore_2

12: iload_2

13: iinc 2, 1

16: istore_3

17: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;

20: iload_3

21: iload_1

22: iadd

23: invokevirtual #3; //Method java/io/PrintStream.println:(I)V

26: return

}

下面我们就来分析下字节码的执行:
Stack=3, Locals=4, Args_size=1,这段说明栈中元素有3个,局部变量表中有元素4个,参数1个

0: bipush 100 # 将常量100压入栈中
2: istore_1 # 从栈中取出常量100存储到局部变量表中,下标索引为1
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_01.png-hunterblog

3: sipush 200 # 将常量200压入栈中
6: iload_1 # 将下标索引为1的常量从局部变量表中压入栈中。
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_02.png-hunterblog

7: iadd # 从栈中取出两个整型常量相加并将结果存储到栈中
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_03.png-hunterblog

8: bipush 100 # 将常量100压入栈中
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_04.png-hunterblog

10: isub # 从栈中取出两个整型常量做相减并将结果存储到栈中
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_05.png-hunterblog

11: istore_2 # 从栈中取出常量存储到局部变量表中,下标索引为2
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_06.png-hunterblog

12: iload_2 # 将下标索引为2的常量从局部变量表中压入栈中
13: iinc 2, 1 # 将局部变量表中下标索引为2的变量自增。
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_07.png-hunterblog

16: istore_3 # 从栈中取出常量存储到局部变量表中,下标索引为3
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_08.png-hunterblog

17: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;
20: iload_3 # 将下标索引为3的常量从局部变量表中压入栈中
21: iload_1 # 将下标索引为1的常量从局部变量表中压入栈中
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_09.png-hunterblog

22: iadd # 从栈中取出两个整型常量相加并将结果存储到栈中
http://7xqlat.com1.z0.glb.clouddn.com/jvm\_read\_class\_stack\_10.png-hunterblog

23: invokevirtual #3; //Method java/io/PrintStream.println:(I)V
26: return

所以最后执行结果是300

大家可能注意到了,在字节码第三行Stack=3, Locals=4, Args_size=1,显示的是栈中有3个元素,为什么我们这里只有两个?其实栈中还有一个this元素,由于this不在本篇介绍范围之类,所以例图就省略了,特此说明下。大家可能疑惑这个this是什么时候入栈的,通过下面的代码相信大家就明白

public test.Test();

Code:

Stack=1, Locals=1, Args_size=1

0: aload_0

1: invokespecial #1; //Method java/lang/Object.”“:()V

4: return

LineNumberTable:

line 3: 0

参考

Java字节码指令列表

http://www.linmuxi.com/2016/02/26/jvm-class-read-01/

https://www.jianshu.com/p/6a8997560b05
附录

指令码

助记符

说明

0x00

nop

什么都不做

0x01

aconst_null

将null推送至栈顶

0x02

iconst_m1

将int型-1推送至栈顶

0x03

iconst_0

将int型0推送至栈顶

0x04

iconst_1

将int型1推送至栈顶

0x05

iconst_2

将int型2推送至栈顶

0x06

iconst_3

将int型3推送至栈顶

0x07

iconst_4

将int型4推送至栈顶

0x08

iconst_5

将int型5推送至栈顶

0x09

lconst_0

将long型0推送至栈顶

0x0a

lconst_1

将long型1推送至栈顶

0x0b

fconst_0

将float型0推送至栈顶

0x0c

fconst_1

将float型1推送至栈顶

0x0d

fconst_2

将float型2推送至栈顶

0x0e

dconst_0

将double型0推送至栈顶

0x0f

dconst_1

将double型1推送至栈顶

0x10

bipush

将单字节的常量值(-128~127)推送至栈顶

0x11

sipush

将一个短整型常量值(-32768~32767)推送至栈顶

0x12

ldc

将int, float或String型常量值从常量池中推送至栈顶

0x13

ldc_w

将int, float或String型常量值从常量池中推送至栈顶(宽索引)

0x14

ldc2_w

将long或double型常量值从常量池中推送至栈顶(宽索引)

0x15

iload

将指定的int型本地变量推送至栈顶

0x16

lload

将指定的long型本地变量推送至栈顶

0x17

fload

将指定的float型本地变量推送至栈顶

0x18

dload

将指定的double型本地变量推送至栈顶

0x19

aload

将指定的引用类型本地变量推送至栈顶

0x1a

iload_0

将第一个int型本地变量推送至栈顶

0x1b

iload_1

将第二个int型本地变量推送至栈顶

0x1c

iload_2

将第三个int型本地变量推送至栈顶

0x1d

iload_3

将第四个int型本地变量推送至栈顶

0x1e

lload_0

将第一个long型本地变量推送至栈顶

0x1f

lload_1

将第二个long型本地变量推送至栈顶

0x20

lload_2

将第三个long型本地变量推送至栈顶

0x21

lload_3

将第四个long型本地变量推送至栈顶

0x22

fload_0

将第一个float型本地变量推送至栈顶

0x23

fload_1

将第二个float型本地变量推送至栈顶

0x24

fload_2

将第三个float型本地变量推送至栈顶

0x25

fload_3

将第四个float型本地变量推送至栈顶

0x26

dload_0

将第一个double型本地变量推送至栈顶

0x27

dload_1

将第二个double型本地变量推送至栈顶

0x28

dload_2

将第三个double型本地变量推送至栈顶

0x29

dload_3

将第四个double型本地变量推送至栈顶

0x2a

aload_0

将第一个引用类型本地变量推送至栈顶

0x2b

aload_1

将第二个引用类型本地变量推送至栈顶

0x2c

aload_2

将第三个引用类型本地变量推送至栈顶

0x2d

aload_3

将第四个引用类型本地变量推送至栈顶

0x2e

iaload

将int型数组指定索引的值推送至栈顶

0x2f

laload

将long型数组指定索引的值推送至栈顶

0x30

faload

将float型数组指定索引的值推送至栈顶

0x31

daload

将double型数组指定索引的值推送至栈顶

0x32

aaload

将引用型数组指定索引的值推送至栈顶

0x33

baload

将boolean或byte型数组指定索引的值推送至栈顶

0x34

caload

将char型数组指定索引的值推送至栈顶

0x35

saload

将short型数组指定索引的值推送至栈顶

0x36

istore

将栈顶int型数值存入指定本地变量

0x37

lstore

将栈顶long型数值存入指定本地变量

0x38

fstore

将栈顶float型数值存入指定本地变量

0x39

dstore

将栈顶double型数值存入指定本地变量

0x3a

astore

将栈顶引用型数值存入指定本地变量

0x3b

istore_0

将栈顶int型数值存入第一个本地变量

0x3c

istore_1

将栈顶int型数值存入第二个本地变量

0x3d

istore_2

将栈顶int型数值存入第三个本地变量

0x3e

istore_3

将栈顶int型数值存入第四个本地变量

0x3f

lstore_0

将栈顶long型数值存入第一个本地变量

0x40

lstore_1

将栈顶long型数值存入第二个本地变量

0x41

lstore_2

将栈顶long型数值存入第三个本地变量

0x42

lstore_3

将栈顶long型数值存入第四个本地变量

0x43

fstore_0

将栈顶float型数值存入第一个本地变量

0x44

fstore_1

将栈顶float型数值存入第二个本地变量

0x45

fstore_2

将栈顶float型数值存入第三个本地变量

0x46

fstore_3

将栈顶float型数值存入第四个本地变量

0x47

dstore_0

将栈顶double型数值存入第一个本地变量

0x48

dstore_1

将栈顶double型数值存入第二个本地变量

0x49

dstore_2

将栈顶double型数值存入第三个本地变量

0x4a

dstore_3

将栈顶double型数值存入第四个本地变量

0x4b

astore_0

将栈顶引用型数值存入第一个本地变量

0x4c

astore_1

将栈顶引用型数值存入第二个本地变量

0x4d

astore_2

将栈顶引用型数值存入第三个本地变量

0x4e

astore_3

将栈顶引用型数值存入第四个本地变量

0x4f

iastore

将栈顶int型数值存入指定数组的指定索引位置

0x50

lastore

将栈顶long型数值存入指定数组的指定索引位置

0x51

fastore

将栈顶float型数值存入指定数组的指定索引位置

0x52

dastore

将栈顶double型数值存入指定数组的指定索引位置

0x53

aastore

将栈顶引用型数值存入指定数组的指定索引位置

0x54

bastore

将栈顶boolean或byte型数值存入指定数组的指定索引位置

0x55

castore

将栈顶char型数值存入指定数组的指定索引位置

0x56

sastore

将栈顶short型数值存入指定数组的指定索引位置

0x57

pop

将栈顶数值弹出 (数值不能是long或double类型的)

0x58

pop2

将栈顶的一个(long或double类型的)或两个数值弹出(其它)

0x59

dup

复制栈顶数值并将复制值压入栈顶

0x5a

dup_x1

复制栈顶数值并将两个复制值压入栈顶

0x5b

dup_x2

复制栈顶数值并将三个(或两个)复制值压入栈顶

0x5c

dup2

复制栈顶一个(long或double类型的)或两个(其它)数值并将复制值压入栈顶

0x5d

dup2_x1

<待补充>

0x5e

dup2_x2

<待补充>

0x5f

swap

将栈最顶端的两个数值互换(数值不能是long或double类型的)

0x60

iadd

将栈顶两int型数值相加并将结果压入栈顶

0x61

ladd

将栈顶两long型数值相加并将结果压入栈顶

0x62

fadd

将栈顶两float型数值相加并将结果压入栈顶

0x63

dadd

将栈顶两double型数值相加并将结果压入栈顶

0x64

isub

将栈顶两int型数值相减并将结果压入栈顶

0x65

lsub

将栈顶两long型数值相减并将结果压入栈顶

0x66

fsub

将栈顶两float型数值相减并将结果压入栈顶

0x67

dsub

将栈顶两double型数值相减并将结果压入栈顶

0x68

imul

将栈顶两int型数值相乘并将结果压入栈顶

0x69

lmul

将栈顶两long型数值相乘并将结果压入栈顶

0x6a

fmul

将栈顶两float型数值相乘并将结果压入栈顶

0x6b

dmul

将栈顶两double型数值相乘并将结果压入栈顶

0x6c

idiv

将栈顶两int型数值相除并将结果压入栈顶

0x6d

ldiv

将栈顶两long型数值相除并将结果压入栈顶

0x6e

fdiv

将栈顶两float型数值相除并将结果压入栈顶

0x6f

ddiv

将栈顶两double型数值相除并将结果压入栈顶

0x70

irem

将栈顶两int型数值作取模运算并将结果压入栈顶

0x71

lrem

将栈顶两long型数值作取模运算并将结果压入栈顶

0x72

frem

将栈顶两float型数值作取模运算并将结果压入栈顶

0x73

drem

将栈顶两double型数值作取模运算并将结果压入栈顶

0x74

ineg

将栈顶int型数值取负并将结果压入栈顶

0x75

lneg

将栈顶long型数值取负并将结果压入栈顶

0x76

fneg

将栈顶float型数值取负并将结果压入栈顶

0x77

dneg

将栈顶double型数值取负并将结果压入栈顶

0x78

ishl

将int型数值左移位指定位数并将结果压入栈顶

0x79

lshl

将long型数值左移位指定位数并将结果压入栈顶

0x7a

ishr

将int型数值右(符号)移位指定位数并将结果压入栈顶

0x7b

lshr

将long型数值右(符号)移位指定位数并将结果压入栈顶

0x7c

iushr

将int型数值右(无符号)移位指定位数并将结果压入栈顶

0x7d

lushr

将long型数值右(无符号)移位指定位数并将结果压入栈顶

0x7e

iand

将栈顶两int型数值作“按位与”并将结果压入栈顶

0x7f

land

将栈顶两long型数值作“按位与”并将结果压入栈顶

0x80

ior

将栈顶两int型数值作“按位或”并将结果压入栈顶

0x81

lor

将栈顶两long型数值作“按位或”并将结果压入栈顶

0x82

ixor

将栈顶两int型数值作“按位异或”并将结果压入栈顶

0x83

lxor

将栈顶两long型数值作“按位异或”并将结果压入栈顶

0x84

iinc

将指定int型变量增加指定值(i++, i—, i+=2)

0x85

i2l

将栈顶int型数值强制转换成long型数值并将结果压入栈顶

0x86

i2f

将栈顶int型数值强制转换成float型数值并将结果压入栈顶

0x87

i2d

将栈顶int型数值强制转换成double型数值并将结果压入栈顶

0x88

l2i

将栈顶long型数值强制转换成int型数值并将结果压入栈顶

0x89

l2f

将栈顶long型数值强制转换成float型数值并将结果压入栈顶

0x8a

l2d

将栈顶long型数值强制转换成double型数值并将结果压入栈顶

0x8b

f2i

将栈顶float型数值强制转换成int型数值并将结果压入栈顶

0x8c

f2l

将栈顶float型数值强制转换成long型数值并将结果压入栈顶

0x8d

f2d

将栈顶float型数值强制转换成double型数值并将结果压入栈顶

0x8e

d2i

将栈顶double型数值强制转换成int型数值并将结果压入栈顶

0x8f

d2l

将栈顶double型数值强制转换成long型数值并将结果压入栈顶

0x90

d2f

将栈顶double型数值强制转换成float型数值并将结果压入栈顶

0x91

i2b

将栈顶int型数值强制转换成byte型数值并将结果压入栈顶

0x92

i2c

将栈顶int型数值强制转换成char型数值并将结果压入栈顶

0x93

i2s

将栈顶int型数值强制转换成short型数值并将结果压入栈顶

0x94

lcmp

比较栈顶两long型数值大小,并将结果(1,0,-1)压入栈顶

0x95

fcmpl

比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶

0x96

fcmpg

比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶

0x97

dcmpl

比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶

0x98

dcmpg

比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶

0x99

ifeq

当栈顶int型数值等于0时跳转

0x9a

ifne

当栈顶int型数值不等于0时跳转

0x9b

iflt

当栈顶int型数值小于0时跳转

0x9c

ifge

当栈顶int型数值大于等于0时跳转

0x9d

ifgt

当栈顶int型数值大于0时跳转

0x9e

ifle

当栈顶int型数值小于等于0时跳转

0x9f

if_icmpeq

比较栈顶两int型数值大小,当结果等于0时跳转

0xa0

if_icmpne

比较栈顶两int型数值大小,当结果不等于0时跳转

0xa1

if_icmplt

比较栈顶两int型数值大小,当结果小于0时跳转

0xa2

if_icmpge

比较栈顶两int型数值大小,当结果大于等于0时跳转

0xa3

if_icmpgt

比较栈顶两int型数值大小,当结果大于0时跳转

0xa4

if_icmple

比较栈顶两int型数值大小,当结果小于等于0时跳转

0xa5

if_acmpeq

比较栈顶两引用型数值,当结果相等时跳转

0xa6

if_acmpne

比较栈顶两引用型数值,当结果不相等时跳转

0xa7

goto

无条件跳转

0xa8

jsr

跳转至指定16位offset位置,并将jsr下一条指令地址压入栈顶

0xa9

ret

返回至本地变量指定的index的指令位置(一般与jsr, jsr_w联合使用)

0xaa

tableswitch

用于switch条件跳转,case值连续(可变长度指令)

0xab

lookupswitch

用于switch条件跳转,case值不连续(可变长度指令)

0xac

ireturn

从当前方法返回int

0xad

lreturn

从当前方法返回long

0xae

freturn

从当前方法返回float

0xaf

dreturn

从当前方法返回double

0xb0

areturn

从当前方法返回对象引用

0xb1

return

从当前方法返回void

0xb2

getstatic

获取指定类的静态域,并将其值压入栈顶

0xb3

putstatic

为指定的类的静态域赋值

0xb4

getfield

获取指定类的实例域,并将其值压入栈顶

0xb5

putfield

为指定的类的实例域赋值

0xb6

invokevirtual

调用实例方法

0xb7

invokespecial

调用超类构造方法,实例初始化方法,私有方法

0xb8

invokestatic

调用静态方法

0xb9

invokeinterface

调用接口方法

0xba

--

0xbb

new

创建一个对象,并将其引用值压入栈顶

0xbc

newarray

创建一个指定原始类型(如int, float, char…)的数组,并将其引用值压入栈顶

0xbd

anewarray

创建一个引用型(如类,接口,数组)的数组,并将其引用值压入栈顶

0xbe

arraylength

获得数组的长度值并压入栈顶

0xbf

athrow

将栈顶的异常抛出

0xc0

checkcast

检验类型转换,检验未通过将抛出ClassCastException

0xc1

instanceof

检验对象是否是指定的类的实例,如果是将1压入栈顶,否则将0压入栈顶

0xc2

monitorenter

获得对象的锁,用于同步方法或同步块

0xc3

monitorexit

释放对象的锁,用于同步方法或同步块

0xc4

wide

<待补充>

0xc5

multianewarray

创建指定类型和指定维度的多维数组(执行该指令时,操作栈中必须包含各维度的长度值),并将其引用值压入栈顶

0xc6

ifnull

为null时跳转

0xc7

ifnonnull

不为null时跳转

0xc8

goto_w

无条件跳转(宽索引)

0xc9

jsr_w

跳转至指定32位offset位置,并将jsr_w下一条指令地址压入栈顶
-——————————
作者:Franco蜡笔小强
来源:CSDN
原文:https://blog.csdn.net/w372426096/article/details/81664431
版权声明:本文为博主原创文章,转载请附上博文链接!

发表评论

表情:
评论列表 (有 0 条评论,412人围观)

还没有评论,来说两句吧...

相关阅读

    相关 字节指令

    目录 2.1 入门 2.2 javap 工具 2.3 图解方法执行流程 1)原始 java 代码 2)编译后的字节码文件 3)常量池载入运行时常量池 4)方法字节

    相关 Javap 指令

    有时候为了能理解JVM对程序所做的优化等,需要查看程序的字节码,因此知道了解一些常见的指令集很重要! 参考链接 [Javap 指令集][Javap] [Javap]: h

    相关 字节指令分类

    1、加载和存储指令 用于将数据在栈帧中的局部变量表和操作数栈之间来回传输 将一个局部变量加载到操作栈:iload、iload\_<n>、lload、lload\_<n

    相关 JVM:字节指令

    加载和存储指令 加载和存储指令用于将数据在栈帧中的局部变量表和操作数栈之间来回传输,这类指令包括如下内容。 将一个局部变量加载到操作栈: > iload、ilo