转:Awesome Image/Video segmentation
#
Semantic segmentation
U-Net [https://arxiv.org/pdf/1505.04597.pdf] [2015]
- https://github.com/zhixuhao/unet [Keras]
- /images/20220109/f2dc64bdec9141e1bd102a2be4d23c19.png [Keras]
- /images/20220109/334c228d38d44ba792ce28eab766dd87.png [Keras]
- https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model [Keras]
- /images/20220109/3102765c4eb342fb9f736a9a6085d884.png [Keras]
- https://github.com/jakeret/tf_unet [Tensorflow]
- /images/20220109/bb9483d0911a4f399db55befde17e4a0.png [Keras]
- /images/20220109/e997a99e1ceb42f2a4ded045e01deee2.png [PyTorch]
- /images/20220109/ca1923aa9e984e98b2a34bfeb640cd3b.png [Keras]
- /images/20220109/5c6c11b514f24108993e1be3a58136c2.png [Keras]
- https://github.com/qureai/ultrasound-nerve-segmentation-using-torchnet [Torch]
- /images/20220109/b6db3feab8cf4b6fa7145dbb70ef2f6d.png [PyTorch]
- https://github.com/qubvel/segmentation_models [Keras]
- https://github.com/LeeJunHyun/Image_Segmentation#u-net [PyTorch]
- https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ [Caffe + Matlab]
- https://github.com/zhixuhao/unet [Keras]
SegNet [https://arxiv.org/pdf/1511.00561.pdf] [2016]
- https://github.com/alexgkendall/caffe-segnet [Caffe]
- https://github.com/developmentseed/caffe/tree/segnet-multi-gpu [Caffe]
- https://github.com/preddy5/segnet [Keras]
- https://github.com/imlab-uiip/keras-segnet [Keras]
- https://github.com/andreaazzini/segnet [Tensorflow]
- https://github.com/fedor-chervinskii/segnet-torch [Torch]
- https://github.com/0bserver07/Keras-SegNet-Basic [Keras]
- https://github.com/tkuanlun350/Tensorflow-SegNet [Tensorflow]
- /images/20220109/bb9483d0911a4f399db55befde17e4a0.png [Keras]
- /images/20220109/e997a99e1ceb42f2a4ded045e01deee2.png [PyTorch]
- https://github.com/chainer/chainercv/tree/master/examples/segnet [Chainer]
- https://github.com/ykamikawa/keras-SegNet [Keras]
- https://github.com/ykamikawa/tf-keras-SegNet [Keras]
DeepLab [https://arxiv.org/pdf/1606.00915.pdf] [2017]
- https://bitbucket.org/deeplab/deeplab-public/ [Caffe]
- https://github.com/cdmh/deeplab-public [Caffe]
- https://bitbucket.org/aquariusjay/deeplab-public-ver2 [Caffe]
- https://github.com/TheLegendAli/DeepLab-Context [Caffe]
- https://github.com/msracver/Deformable-ConvNets/tree/master/deeplab [MXNet]
- https://github.com/DrSleep/tensorflow-deeplab-resnet [Tensorflow]
- https://github.com/muyang0320/tensorflow-deeplab-resnet-crf [TensorFlow]
- https://github.com/isht7/pytorch-deeplab-resnet [PyTorch]
- https://github.com/bermanmaxim/jaccardSegment [PyTorch]
- https://github.com/martinkersner/train-DeepLab [Caffe]
- https://github.com/chenxi116/TF-deeplab [Tensorflow]
- https://github.com/bonlime/keras-deeplab-v3-plus [Keras]
- https://github.com/tensorflow/models/tree/master/research/deeplab [Tensorflow]
- https://github.com/speedinghzl/pytorch-segmentation-toolbox [PyTorch]
- https://github.com/kazuto1011/deeplab-pytorch [PyTorch]
- https://github.com/youansheng/torchcv [PyTorch]
FCN [https://arxiv.org/pdf/1605.06211.pdf] [2016]
- https://github.com/vlfeat/matconvnet-fcn [MatConvNet]
- https://github.com/shelhamer/fcn.berkeleyvision.org [Caffe]
- https://github.com/MarvinTeichmann/tensorflow-fcn [Tensorflow]
- https://github.com/aurora95/Keras-FCN [Keras]
- https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras [Keras]
- https://github.com/k3nt0w/FCN_via_keras [Keras]
- https://github.com/shekkizh/FCN.tensorflow [Tensorflow]
- https://github.com/seewalker/tf-pixelwise [Tensorflow]
- /images/20220109/bb9483d0911a4f399db55befde17e4a0.png [Keras]
- /images/20220109/e997a99e1ceb42f2a4ded045e01deee2.png [PyTorch]
- https://github.com/wkentaro/pytorch-fcn [PyTorch]
- https://github.com/wkentaro/fcn [Chainer]
- https://github.com/apache/incubator-mxnet/tree/master/example/fcn-xs [MxNet]
- https://github.com/muyang0320/tf-fcn [Tensorflow]
- https://github.com/ycszen/pytorch-seg [PyTorch]
- https://github.com/Kaixhin/FCN-semantic-segmentation [PyTorch]
- https://github.com/petrama/VGGSegmentation [Tensorflow]
- https://github.com/simonguist/testing-fcn-for-cityscapes [Caffe]
- https://github.com/hellochick/semantic-segmentation-tensorflow [Tensorflow]
- https://github.com/pierluigiferrari/fcn8s_tensorflow [Tensorflow]
- https://github.com/theduynguyen/Keras-FCN [Keras]
- https://github.com/JihongJu/keras-fcn [Keras]
ENet [https://arxiv.org/pdf/1606.02147.pdf] [2016]
- https://github.com/TimoSaemann/ENet [Caffe]
- https://github.com/e-lab/ENet-training [Torch]
- https://github.com/PavlosMelissinos/enet-keras [Keras]
- https://github.com/fregu856/segmentation [Tensorflow]
- https://github.com/kwotsin/TensorFlow-ENet [Tensorflow]
- https://github.com/davidtvs/PyTorch-ENet [PyTorch]
LinkNet [https://arxiv.org/pdf/1707.03718.pdf] [2017]
- https://github.com/e-lab/LinkNet [Torch]
- https://github.com/qubvel/segmentation_models [Keras]
DenseNet [https://arxiv.org/pdf/1608.06993.pdf] [2018]
- https://github.com/flyyufelix/DenseNet-Keras [Keras]
Tiramisu [https://arxiv.org/pdf/1611.09326.pdf] [2017]
- https://github.com/0bserver07/One-Hundred-Layers-Tiramisu [Keras]
- https://github.com/SimJeg/FC-DenseNet [Lasagne]
DilatedNet [https://arxiv.org/pdf/1511.07122.pdf] [2016]
- https://github.com/nicolov/segmentation_keras [Keras]
- https://github.com/fyu/dilation [Caffe]
- https://github.com/fyu/drn#semantic-image-segmentataion [PyTorch]
- https://github.com/hangzhaomit/semantic-segmentation-pytorch [PyTorch]
PixelNet [https://arxiv.org/pdf/1609.06694.pdf] [2016]
- https://github.com/aayushbansal/PixelNet [Caffe]
ICNet [https://arxiv.org/pdf/1704.08545.pdf] [2017]
- https://github.com/hszhao/ICNet [Caffe]
- https://github.com/ai-tor/Keras-ICNet [Keras]
- https://github.com/hellochick/ICNet-tensorflow [Tensorflow]
- https://github.com/oandrienko/fast-semantic-segmentation [Tensorflow]
ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf] [?]
- https://github.com/Eromera/erfnet [Torch]
- https://github.com/Eromera/erfnet_pytorch [PyTorch]
RefineNet [https://arxiv.org/pdf/1611.06612.pdf] [2016]
- https://github.com/guosheng/refinenet [MatConvNet]
PSPNet [https://arxiv.org/pdf/1612.01105.pdf,https://hszhao.github.io/projects/pspnet/] [2017]
- https://github.com/hszhao/PSPNet [Caffe]
- /images/20220109/e997a99e1ceb42f2a4ded045e01deee2.png [PyTorch]
- https://github.com/mitmul/chainer-pspnet [Chainer]
- https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow [Keras/Tensorflow]
- https://github.com/pudae/tensorflow-pspnet [Tensorflow]
- https://github.com/hellochick/PSPNet-tensorflow [Tensorflow]
- https://github.com/hellochick/semantic-segmentation-tensorflow [Tensorflow]
- https://github.com/qubvel/segmentation_models [Keras]
- https://github.com/oandrienko/fast-semantic-segmentation [Tensorflow]
- https://github.com/speedinghzl/pytorch-segmentation-toolbox [PyTorch]
- https://github.com/youansheng/torchcv [PyTorch]
DeconvNet [https://arxiv.org/pdf/1505.04366.pdf] [2015]
- http://cvlab.postech.ac.kr/research/deconvnet/ [Caffe]
- https://github.com/HyeonwooNoh/DeconvNet [Caffe]
- https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation [Tensorflow]
FRRN [https://arxiv.org/pdf/1611.08323.pdf] [2016]
- https://github.com/TobyPDE/FRRN [Lasagne]
GCN [https://arxiv.org/pdf/1703.02719.pdf] [2017]
- /images/20220109/e997a99e1ceb42f2a4ded045e01deee2.png [PyTorch]
- https://github.com/ycszen/pytorch-seg [PyTorch]
LRR [https://arxiv.org/pdf/1605.02264.pdf] [2016]
- https://github.com/golnazghiasi/LRR [Matconvnet]
DUC, HDC [https://arxiv.org/pdf/1702.08502.pdf] [2017]
- /images/20220109/e997a99e1ceb42f2a4ded045e01deee2.png [PyTorch]
- https://github.com/ycszen/pytorch-seg [PyTorch]
MultiNet [https://arxiv.org/pdf/1612.07695.pdf] [2016]
- https://github.com/MarvinTeichmann/MultiNet
- https://github.com/MarvinTeichmann/KittiSeg
Segaware [https://arxiv.org/pdf/1708.04607.pdf] [2017]
- https://github.com/aharley/segaware [Caffe]
Semantic Segmentation using Adversarial Networks [https://arxiv.org/pdf/1611.08408.pdf] [2016]
- https://github.com/oyam/Semantic-Segmentation-using-Adversarial-Networks [Chainer]
PixelDCN [https://arxiv.org/pdf/1705.06820.pdf] [2017]
- https://github.com/HongyangGao/PixelDCN [Tensorflow]
ShuffleSeg [https://arxiv.org/pdf/1803.03816.pdf] [2018]
- https://github.com/MSiam/TFSegmentation [TensorFlow]
AdaptSegNet [https://arxiv.org/pdf/1802.10349.pdf] [2018]
- https://github.com/wasidennis/AdaptSegNet [PyTorch]
TuSimple-DUC [https://arxiv.org/pdf/1702.08502.pdf] [2018]
- https://github.com/TuSimple/TuSimple-DUC [MxNet]
FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf] [2017]
R2U-Net [https://arxiv.org/ftp/arxiv/papers/1802/1802.06955.pdf] [2018]
Attention U-Net [https://arxiv.org/pdf/1804.03999.pdf] [2018]
- https://github.com/LeeJunHyun/Image_Segmentation#attention-u-net [PyTorch]
- https://github.com/ozan-oktay/Attention-Gated-Networks [PyTorch]
DANet [https://arxiv.org/pdf/1809.02983.pdf] [2018]
- https://github.com/junfu1115/DANet [PyTorch]
ShelfNet [https://arxiv.org/pdf/1811.11254.pdf] [2018]
- https://github.com/juntang-zhuang/ShelfNet [PyTorch]
LadderNet [https://arxiv.org/pdf/1810.07810.pdf] [2018]
- https://github.com/juntang-zhuang/LadderNet [PyTorch]
BiSeNet [https://arxiv.org/pdf/1808.00897.pdf] [2018]
- https://github.com/ooooverflow/BiSeNet [PyTorch]
- https://github.com/ycszen/TorchSeg [PyTorch]
ESPNet [https://arxiv.org/pdf/1803.06815.pdf] [2018]
- https://github.com/sacmehta/ESPNet [PyTorch]
DFN [https://arxiv.org/pdf/1804.09337.pdf] [2018]
- https://github.com/ycszen/TorchSeg [PyTorch]
CCNet [https://arxiv.org/pdf/1811.11721.pdf] [2018]
- https://github.com/speedinghzl/CCNet [PyTorch]
DenseASPP [http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_DenseASPP_for_Semantic_CVPR_2018_paper.pdf] [2018]
- https://github.com/youansheng/torchcv [PyTorch]
#
Instance aware segmentation
FCIS [https://arxiv.org/pdf/1611.07709.pdf]
- https://github.com/msracver/FCIS [MxNet]
MNC [https://arxiv.org/pdf/1512.04412.pdf]
- https://github.com/daijifeng001/MNC [Caffe]
DeepMask [https://arxiv.org/pdf/1506.06204.pdf]
- https://github.com/facebookresearch/deepmask [Torch]
SharpMask [https://arxiv.org/pdf/1603.08695.pdf]
- https://github.com/facebookresearch/deepmask [Torch]
Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf]
- https://github.com/CharlesShang/FastMaskRCNN [Tensorflow]
- https://github.com/jasjeetIM/Mask-RCNN [Caffe]
- https://github.com/TuSimple/mx-maskrcnn [MxNet]
- https://github.com/matterport/Mask_RCNN [Keras]
- https://github.com/facebookresearch/maskrcnn-benchmark [PyTorch]
RIS [https://arxiv.org/pdf/1511.08250.pdf]
- https://github.com/bernard24/RIS [Torch]
FastMask [https://arxiv.org/pdf/1612.08843.pdf]
- https://github.com/voidrank/FastMask [Caffe]
BlitzNet [https://arxiv.org/pdf/1708.02813.pdf]
- https://github.com/dvornikita/blitznet [Tensorflow]
PANet [https://arxiv.org/pdf/1803.01534.pdf] [2018]
- https://github.com/ShuLiu1993/PANet [Caffe]
TernausNetV2 [https://arxiv.org/pdf/1806.00844.pdf] [2018]
#
Weakly-supervised segmentation
SEC [https://arxiv.org/pdf/1603.06098.pdf]
- https://github.com/kolesman/SEC [Caffe]
#
RNN
ReNet [https://arxiv.org/pdf/1505.00393.pdf]
- https://github.com/fvisin/reseg [Lasagne]
ReSeg [https://arxiv.org/pdf/1511.07053.pdf]
- https://github.com/Wizaron/reseg-pytorch [PyTorch]
- https://github.com/fvisin/reseg [Lasagne]
RIS [https://arxiv.org/pdf/1511.08250.pdf]
- https://github.com/bernard24/RIS [Torch]
CRF-RNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf]
- https://github.com/martinkersner/train-CRF-RNN [Caffe]
- https://github.com/torrvision/crfasrnn [Caffe]
- https://github.com/NP-coder/CLPS1520Project [Tensorflow]
- https://github.com/renmengye/rec-attend-public [Tensorflow]
- https://github.com/sadeepj/crfasrnn_keras [Keras]
#
GANS
pix2pixHD [https://arxiv.org/pdf/1711.11585.pdf] [2018]
- https://github.com/NVIDIA/pix2pixHD
Probalistic Unet [https://arxiv.org/pdf/1806.05034.pdf] [2018]
- https://github.com/SimonKohl/probabilistic_unet
#
Graphical Models (CRF, MRF)
- https://github.com/cvlab-epfl/densecrf
- http://vladlen.info/publications/efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials/
- http://www.philkr.net/home/densecrf
- http://graphics.stanford.edu/projects/densecrf/
- https://github.com/amiltonwong/segmentation/blob/master/segmentation.ipynb
- https://github.com/jliemansifry/super-simple-semantic-segmentation
- http://users.cecs.anu.edu.au/~jdomke/JGMT/
- https://www.quora.com/How-can-one-train-and-test-conditional-random-field-CRF-in-Python-on-our-own-training-testing-dataset
- https://github.com/tpeng/python-crfsuite
- https://github.com/chokkan/crfsuite
- https://sites.google.com/site/zeppethefake/semantic-segmentation-crf-baseline
- https://github.com/lucasb-eyer/pydensecrf
#
Datasets:
- Stanford Background Dataset
- Sift Flow Dataset
- Barcelona Dataset
- Microsoft COCO dataset
- MSRC Dataset
- LITS Liver Tumor Segmentation Dataset
- KITTI
- Pascal Context
- Data from Games dataset
- Human parsing dataset
- Mapillary Vistas Dataset
- Microsoft AirSim
- MIT Scene Parsing Benchmark
- COCO 2017 Stuff Segmentation Challenge
- ADE20K Dataset
- INRIA Annotations for Graz-02
- Daimler dataset
- ISBI Challenge: Segmentation of neuronal structures in EM stacks
- INRIA Annotations for Graz-02 (IG02)
- Pratheepan Dataset
- Clothing Co-Parsing (CCP) Dataset
- Inria Aerial Image
- ApolloScape
- UrbanMapper3D
- RoadDetector
- Cityscapes
- CamVid
#
Benchmarks
- /images/20220109/e997a99e1ceb42f2a4ded045e01deee2.png [PyTorch]
- https://github.com/meetshah1995/pytorch-semseg [PyTorch]
- https://github.com/GeorgeSeif/Semantic-Segmentation-Suite [Tensorflow]
- https://github.com/MSiam/TFSegmentation [Tensorflow]
- https://github.com/CSAILVision/sceneparsing [Caffe+Matlab]
- https://github.com/BloodAxe/segmentation-networks-benchmark [PyTorch]
- https://github.com/warmspringwinds/pytorch-segmentation-detection [PyTorch]
- https://github.com/ycszen/TorchSeg [PyTorch]
- https://github.com/qubvel/segmentation_models [Keras]
- https://github.com/qubvel/segmentation_models.pytorch [PyTorch]
#
Starter code
- https://github.com/mrgloom/keras-semantic-segmentation-example
#
Annotation Tools:
- https://github.com/AKSHAYUBHAT/ImageSegmentation
- https://github.com/kyamagu/js-segment-annotator
- https://github.com/CSAILVision/LabelMeAnnotationTool
- https://github.com/seanbell/opensurfaces-segmentation-ui
- https://github.com/lzx1413/labelImgPlus
- https://github.com/wkentaro/labelme
- https://github.com/labelbox/labelbox
- https://github.com/Deep-Magic/COCO-Style-Dataset-Generator-GUI
- https://github.com/Labelbox/Labelbox
- https://github.com/opencv/cvat
#
Results:
- MSRC-21
- Cityscapes
- VOC2012
- https://paperswithcode.com/task/semantic-segmentation
#
Metrics
- https://github.com/martinkersner/py_img_seg_eval
#
Losses
- http://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf
- https://arxiv.org/pdf/1705.08790.pdf
- https://arxiv.org/pdf/1707.03237.pdf
- http://www.bmva.org/bmvc/2013/Papers/paper0032/paper0032.pdf
#
Other lists
- https://github.com/tangzhenyu/SemanticSegmentation_DL
- https://github.com/nightrome/really-awesome-semantic-segmentation
- https://github.com/JackieZhangdx/InstanceSegmentationList
#
Medical image segmentation:
DIGITS
- https://github.com/NVIDIA/DIGITS/tree/master/examples/medical-imaging
U-Net: Convolutional Networks for Biomedical Image Segmentation
- http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
- https://github.com/dmlc/mxnet/issues/1514
- /images/20220109/5c6c11b514f24108993e1be3a58136c2.png
- https://github.com/fvisin/reseg
- https://github.com/yulequan/melanoma-recognition
- http://www.andrewjanowczyk.com/use-case-1-nuclei-segmentation/
- https://github.com/junyanz/MCILBoost
- https://github.com/imlab-uiip/lung-segmentation-2d
- https://github.com/scottykwok/cervix-roi-segmentation-by-unet
- https://github.com/WeidiXie/cell_counting_v2
- https://github.com/yandexdataschool/YSDA_deeplearning17/blob/master/Seminar6/Seminar%206%20-%20segmentation.ipynb
Cascaded-FCN
- https://github.com/IBBM/Cascaded-FCN
Keras
- /images/20220109/f2dc64bdec9141e1bd102a2be4d23c19.png
- /images/20220109/334c228d38d44ba792ce28eab766dd87.png
- https://github.com/intact-project/ild-cnn
- https://github.com/scottykwok/cervix-roi-segmentation-by-unet
- https://github.com/lishen/end2end-all-conv
Tensorflow
- https://github.com/imatge-upc/liverseg-2017-nipsws
- https://github.com/DLTK/DLTK/tree/master/examples/applications/MRBrainS13_tissue_segmentation
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)
- https://github.com/ecobost/cnn4brca
Papers:
- https://www2.warwick.ac.uk/fac/sci/dcs/people/research/csrkbb/tmi2016_ks.pdf
Sliding window approach
- http://people.idsia.ch/~juergen/nips2012.pdf
- https://github.com/albarqouni/Deep-Learning-for-Medical-Applications#segmentation
Data:
- https://luna16.grand-challenge.org/
- https://camelyon16.grand-challenge.org/
- https://github.com/beamandrew/medical-data
#
Satellite images segmentation
- https://github.com/mshivaprakash/sat-seg-thesis
- https://github.com/KGPML/Hyperspectral
- https://github.com/lopuhin/kaggle-dstl
- https://github.com/mitmul/ssai
- https://github.com/mitmul/ssai-cnn
- https://github.com/azavea/raster-vision
- https://github.com/nshaud/DeepNetsForEO
- https://github.com/trailbehind/DeepOSM
- https://github.com/mapbox/robosat
https://github.com/datapink/robosat.pink
Data:
- https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
- SpaceNet[https://spacenetchallenge.github.io/]
- https://github.com/chrieke/awesome-satellite-imagery-datasets
#
Video segmentation
- https://github.com/shelhamer/clockwork-fcn
- https://github.com/JingchunCheng/Seg-with-SPN
#
Autonomous driving
- https://github.com/MarvinTeichmann/MultiNet
- https://github.com/MarvinTeichmann/KittiSeg
- https://github.com/vxy10/p5_VehicleDetection_Unet [Keras]
- https://github.com/ndrplz/self-driving-car
- https://github.com/mvirgo/MLND-Capstone
- https://github.com/zhujun98/semantic_segmentation/tree/master/fcn8s_road
- https://github.com/MaybeShewill-CV/lanenet-lane-detection
#
Other
#
Networks by framework (Older list)
Keras
- https://github.com/gakarak/FCN_MSCOCO_Food_Segmentation
- https://github.com/abbypa/NNProject_DeepMask
TensorFlow
- https://github.com/warmspringwinds/tf-image-segmentation
Caffe
- https://github.com/xiaolonw/nips14_loc_seg_testonly
- https://github.com/naibaf7/caffe_neural_tool
torch
- https://github.com/erogol/seg-torch
- https://github.com/phillipi/pix2pix
MXNet
- https://github.com/itijyou/ademxapp
#
Papers and Code (Older list)
Simultaneous detection and segmentation
- http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/
- https://github.com/bharath272/sds_eccv2014
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
- https://github.com/HyeonwooNoh/DecoupledNet
Learning to Propose Objects
- http://vladlen.info/publications/learning-to-propose-objects/
- https://github.com/philkr/lpo
Nonparametric Scene Parsing via Label Transfer
- http://people.csail.mit.edu/celiu/LabelTransfer/code.html
Other
- https://github.com/cvjena/cn24
- http://lmb.informatik.uni-freiburg.de/resources/software.php
- https://github.com/NVIDIA/DIGITS/tree/master/examples/semantic-segmentation
- http://jamie.shotton.org/work/code.html
- https://github.com/amueller/textonboost
#
To look at
- https://github.com/fchollet/keras/issues/6538
- https://github.com/warmspringwinds/tensorflow_notes
- https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation
- https://github.com/desimone/segmentation-models
- https://github.com/nightrome/really-awesome-semantic-segmentation
- https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation
- http://www.it-caesar.com/list-of-contemporary-semantic-segmentation-datasets/
- https://github.com/MichaelXin/Awesome-Caffe#23-image-segmentation
- https://github.com/warmspringwinds/pytorch-segmentation-detection
- https://github.com/neuropoly/axondeepseg
- https://github.com/petrochenko-pavel-a/segmentation_training_pipeline
#
Blog posts, other:
- https://handong1587.github.io/deep_learning/2015/10/09/segmentation.html
- http://www.andrewjanowczyk.com/efficient-pixel-wise-deep-learning-on-large-images/
- https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/
- https://github.com/NVIDIA/DIGITS/tree/master/examples/binary-segmentation
- https://github.com/NVIDIA/DIGITS/tree/master/examples/semantic-segmentation
- http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review
- https://medium.com/@barvinograd1/instance-embedding-instance-segmentation-without-proposals-31946a7c53e1
转载于//www.cnblogs.com/augustone/p/10627364.html
还没有评论,来说两句吧...