发表评论取消回复
相关阅读
相关 【机器学习】Kmeans聚类算法
一、聚类简介 Clustering (聚类)是常见的unsupervised learning (无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的
相关 机器学习实战—— Chap07.AdaBoost
import numpy as np import matplotlib.pyplot as plt """ Desc:
相关 机器学习_KMeans聚类算法的学习(Python实现)
> Kmeans算法是最常用的聚类算法。 > 主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配
相关 机器学习实战笔记8(kmeans)
前面的7次笔记介绍的都是分类问题,本次开始介绍聚类问题。分类和聚类的区别在于前者属于监督学习算法,已知样本的标签;后者属于无监督的学习,不知道样本的标签。下面我们来讲解最常用的
相关 2、机器学习算法KMeans -- Java代码
KMeans是属于无监督的分类算法。 代码采用的KMeans++,事先选取指定的聚类中心。 package algorithm.machine;
相关 机器学习实战——机器学习基础
1. 机器学习用到了统计学知识 2. 机器学习就是把无序的数据转换成有用的信息 3. 如何从数据集中选取特征? 通常的做法是测量所有可测属性,而后再挑出重要部
相关 07机器学习实战k-means
K-Means原理初探 K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的
相关 机器学习实战----
一、机器学习实战的github [https://www.jianshu.com/c/ddbe1e7af9c2][https_www.jianshu.com_c_ddbe
相关 机器学习小实战(四) KMeans聚类
目录 一、 KMeans聚类简介 二、小案例 四、 KMeans用于图像压缩 -------------------- 一、 KMeans聚类简介 需要事先指定
还没有评论,来说两句吧...