发表评论取消回复
相关阅读
相关 统计学习方法之朴素贝叶斯
1.贝叶斯 1.后验概率 贝叶斯的厉害之处就在于他是一种基于后验概率的统计理论,先解释一下,先验概率是通过经验判断某件事发生的概率;条件概率是已经x发生的条件下y发生的
相关 《统计学习方法》 朴素贝叶斯 贝叶斯估计 Python实现
代码可在Github上下载:[代码下载][Link 1] 前言 由于使用极大似然估计会出现概率值为0的情况,这会影响后续的计算。比如当有一个后验概率为0的时候,那么会使
相关 李航《统计学习方法》——第三章 k邻近法
由于网上资料很多,这里就不再对算法原理进行推导,仅给出博主用Python实现的代码,供大家参考 适用问题:多类分类 三个基本要素:k值的选择、距离度量及分类决策规则
相关 李航《统计学习方法》——第四章 朴素贝叶斯法
由于网上资料很多,这里就不再对算法原理进行推导,仅给出博主用Python实现的代码,供大家参考 适用问题:多类分类 基于贝叶斯定理和特征条件独立假设 常用
相关 第四章 基于概率论的分类方法:朴素贝叶斯
第4章 基于概率论的分类方法:朴素贝叶斯 前两章我们要求分类器做出艰难决策,给出 “该数据实例属于哪一类”这类问题的明确答案。不过,分类器有时会产生错误结果,这时可以要求
相关 统计学习方法朴素贝叶斯法(附简单模型代码)
朴素贝叶斯(naïve Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集, 首先基于特征条件独立假设学习输入/输出的联合概率分布; 然后基于此
相关 统计学习方法-李航 第三章 K近邻法
简介 K近邻 算法(KNN)是一种基本分类与回归方法,指从一个训练数据集中,找到相近的K个点,这K个实例多数属于某个类,就把输入实例分为这个类。特殊情况,当K=1时,称为
相关 统计学习方法-李航 第四章 朴素贝叶斯法
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。训练的时候,学习输入输出的联合概率分布;分类的时候,利用贝叶斯定理计算后验概率最大的输出。 朴素贝叶斯法的学习与分
还没有评论,来说两句吧...