教程分类名称
MongoDB是什么?
MongoDB的文档数据模型
MongoDB的文档存储结构
MongoDB的安装与测试
MongoDB创建集合
MongoDB update()和save()方法:更新或修改数据
MongoDB删除数据:remove()和delete()方法
MongoDB find()方法:查询数据
MongoDB索引完全攻略
MongoDB分布式集群架构(3种模式)
将MongoDB部署到分布式集群(实操)
Java操作MongoDB数据库(简明版)
文章导航
MongoDB是什么?
MongoDB的文档数据模型
MongoDB的文档存储结构
MongoDB的安装与测试
MongoDB创建集合
MongoDB upda...
MongoDB删除数据:...
MongoDB find...
MongoDB索引完全攻略
MongoDB分布式集群...
将MongoDB部署到分...
Java操作MongoD...
打开导航
# MongoDB分布式集群架构(3种模式) 本教程前面的内容基本涵盖了 MongoDB 的基本知识,现在在单机环境下操作 MongoDB 已经不存在问题,但是单机环境只适合学习和开发测试,在实际的生产环境中,MongoDB 基本是以集群的方式工作的。集群的工作方式能够保证在生产遇到故障时及时恢复,保障应用程序正常地运行和数据的安全。 接下来我们重点介绍 MongoDB 的集群工作方式,以及在集群工作方式下,MongoDB 是如何使用分片和复制的机制来完成对数据的管理和恢复的。 本节我们从理论上讲解 MongoDB 分布式集群架构的三种模式,下节《[将MongoDB部署到分布式集群(实操)](http://dandelioncloud.cn/view/6568.html)》我们会使用三台机器实际部署 MongoDB,带着大家实践一把,光说不练假把式。 MongoDB 有三种集群部署模式,分别为主从复制(Master-Slaver)、副本集(Replica Set)和分片(Sharding)模式。 - Master-Slaver 是一种主从副本的模式,目前已经不推荐使用。 - Replica Set 模式取代了 Master-Slaver 模式,是一种互为主从的关系。Replica Set 将数据复制多份保存,不同服务器保存同一份数据,在出现故障时自动切换,实现故障转移,在实际生产中非常实用。 - Sharding 模式适合处理大量数据,它将数据分开存储,不同服务器保存不同的数据,所有服务器数据的总和即为整个数据集。 Sharding 模式追求的是高性能,而且是三种集群中最复杂的。在实际生产环境中,通常将 Replica Set 和 Sharding 两种技术结合使用。 ## 主从复制 虽然 MongoDB 官方建议用副本集替代主从复制,但是本节还是从主从复制入手,让大家了解 MongoDB 的复制机制。 主从复制是 MongoDB 中最简单的数据库同步备份的集群技术,其基本的设置方式是建立一个主节点(Primary)和一个或多个从节点(Secondary),如下图所示。 ![主从复制](/images/1587237163915.gif "主从复制") 这种方式比单节点的可用性好很多,可用于备份、故障恢复、读扩展等。集群中的主从节点均运行 MongoDB 实例,完成数据的存储、查询与修改操作。 主从复制模式的集群中只能有一个主节点,主节点提供所有的增、删、查、改服务,从节点不提供任何服务,但是可以通过设置使从节点提供查询服务,这样可以减少主节点的压力。 另外,每个从节点要知道主节点的地址,主节点记录在其上的所有操作,从节点定期轮询主节点获取这些操作,然后对自己的数据副本执行这些操作,从而保证从节点的数据与主节点一致。 在主从复制的集群中,当主节点出现故障时,只能人工介入,指定新的主节点,从节点不会自动升级为主节点。同时,在这段时间内,该集群架构只能处于只读状态。 ## 副本集 副本集的集群架构如下图所示。 ![副本集](/images/1587237182989.gif "副本集") 此集群拥有一个主节点和多个从节点,这一点与主从复制模式类似,且主从节点所负责的工作也类似,但是副本集与主从复制的区别在于:当集群中主节点发生故障时,副本集可以自动投票,选举出新的主节点,并引导其余的从节点连接新的主节点,而且这个过程对应用是透明的。 可以说,MongoDB 的副本集是自带故障转移功能的主从复制。 MongoDB 副本集使用的是 N 个 mongod 节点构建的具备自动容错功能、自动恢复功能的高可用方案。在副本集中,任何节点都可作为主节点,但为了维持数据一致性,只能有一个主节点。 主节点负责数据的写入和更新,并在更新数据的同时,将操作信息写入名为 oplog 的日志文件当中。主节点还负责指定其他节点为从节点,并设置从节点数据的可读性,从而让从节点来分担集群读取数据的压力。 另外,从节点会定时轮询读取 oplog 日志,根据日志内容同步更新自身的数据,保持与主节点一致。 在一些场景中,用户还可以使用副本集来扩展读性能,客户端有能力发送读写操作给不同的服务器,也可以在不同的数据中心获取不同的副本来扩展分布式应用的能力。 在副本集中还有一个额外的仲裁节点(不需要使用专用的硬件设备),负责在主节点发生故障时,参与选举新节点作为主节点。 副本集中的各节点会通过心跳信息来检测各自的健康状况,当主节点出现故障时,多个从节点会触发一次新的选举操作,并选举其中一个作为新的主节点。为了保证选举票数不同,副本集的节点数保持为奇数。 ## 分片 副本集可以解决主节点发生故障导致数据丢失或不可用的问题,但遇到需要存储海量数据的情况时,副本集机制就束手无策了。副本集中的一台机器可能不足以存储数据,或者说集群不足以提供可接受的读写吞吐量。这就需要用到 MongoDB 的分片(Sharding)技术,这也是 MongoDB 的另外一种集群部署模式。 分片是指将数据拆分并分散存放在不同机器上的过程。有时也用分区来表示这个概念。将数据分散到不同的机器上,不需要功能强大的大型计算机就可以存储更多的数据,处理更大的负载。 MongoDB 支持自动分片,可以使数据库架构对应用程序不可见,简化系统管理。对应用程序而言,就如同始终在使用一个单机的 MongoDB 服务器一样。 MongoDB 的分片机制允许创建一个包含许多台机器的集群,将数据子集分散在集群中,每个分片维护着一个数据集合的子集。与副本集相比,使用集群架构可以使应用程序具有更强大的数据处理能力。 MongoDB 分片的集群模式如下图所示。 ![分片的集群模式](/images/1587237207158.gif "分片的集群模式") 构建一个 MongoDB 的分片集群,需要三个重要的组件,分别是分片服务器(Shard Server)、配置服务器(Config Server)和路由服务器(Route Server)。 #### Shard Server 每个 Shard Server 都是一个 mongod 数据库实例,用于存储实际的数据块。整个数据库集合分成多个块存储在不同的 Shard Server 中。 在实际生产中,一个 Shard Server 可由几台机器组成一个副本集来承担,防止因主节点单点故障导致整个系统崩溃。 #### Config Server 这是独立的一个 mongod 进程,保存集群和分片的元数据,在集群启动最开始时建立,保存各个分片包含数据的信息。 #### Route Server 这是独立的一个 mongos 进程,Route Server 在集群中可作为路由使用,客户端由此接入,让整个集群看起来像是一个单一的数据库,提供客户端应用程序和分片集群之间的接口。 Route Server 本身不保存数据,启动时从 Config Server 加载集群信息到缓存中,并将客户端的请求路由给每个 Shard Server,在各 Shard Server 返回结果后进行聚合并返回客户端。 以上介绍了 MongoDB 的三种集群模式,副本集已经替代了主从复制,通过备份保证集群的可靠性,分片机制为集群提供了可扩展性,以满足海量数据的存储和分析的需求。 在实际生产环境中,副本集和分片是结合起来使用的,可满足实际应用场景中高可用性和高可扩展性的需求。