二叉树的重建 系统管理员 2024-04-19 07:01 11阅读 0赞 ### 文章目录 ### * * 1.根据二叉树的中序和后续遍历重建二叉树 * 2.根据二叉树的中序和前序遍历重建二叉树 ## 1.根据二叉树的中序和后续遍历重建二叉树 ## 思路:假设递归过程中,某一步的后序序列区间为\[postL,postR\],中序序列区间为\[inL,inR\]; 1. 根据后序遍历的特点可知,postR位置为根结点; 2. 从中序序列中,寻找出root的位置k,k左边的均为左子树,右边的均为右子树; 3. 将左子树区间[postL,k-1]作为新的后序和中序序列,进行递归。 代码如下: #include <iostream> #include <string> #include <vector> using namespace std; struct BTNode { BTNode(char data):_data(data),_pLeft(nullptr),_pRight(nullptr){ } char _data; BTNode* _pLeft; BTNode* _pRight; }; void PreOrder(BTNode* pRoot) { if (pRoot == nullptr) return; cout << pRoot->_data << " "; PreOrder(pRoot->_pLeft); PreOrder(pRoot->_pRight); } void PostOrder(BTNode* pRoot) { if (pRoot == nullptr) return; PostOrder(pRoot->_pLeft); PostOrder(pRoot->_pRight); cout << pRoot->_data << " "; } BTNode* ReBuildBTTree(string& Post, string& In, int PostL, int PostR, int InL, int InR) { if (PostL > PostR) return nullptr; BTNode* pRoot = new BTNode(Post[PostR]); int k = 0; while (In[k] != pRoot->_data) { ++k; } int numLeft = k - InL; pRoot->_pLeft = ReBuildBTTree(Post, In, PostL, PostL + numLeft - 1, InL, k - 1); pRoot->_pRight = ReBuildBTTree(Post, In, PostL + numLeft, PostR - 1, k + 1, InR); return pRoot; } int main() { string In = "dgbaechf"; string Post = "gbdehfca"; string Pre = "adbgcefh"; BTNode* pNewRoot = ReBuildBTTree(Post, In, 0, 7, 0, 7); PreOrder(pNewRoot); cout << endl; system("pause"); return 0; } 输出结果: `a d b g c e f h` ## 2.根据二叉树的中序和前序遍历重建二叉树 ## 思路:假设递归过程中,某一步的后序序列区间为\[preL,preR\],中序序列区间为\[inL,inR\]; 1. 根据前序遍历的特点可知,postL位置为根结点; 2. 从中序序列中,寻找出root的位置k,k左边的均为左子树,右边的均为右子树; 3. 将左子树区间[preL+1,preL+numLeft]作为新的后序和中序序列,进行递归。 代码如下: #include <iostream> #include <string> #include <vector> using namespace std; struct BTNode { BTNode(char data):_data(data),_pLeft(nullptr),_pRight(nullptr){ } char _data; BTNode* _pLeft; BTNode* _pRight; }; void PostOrder(BTNode* pRoot) { if (pRoot == nullptr) return; PostOrder(pRoot->_pLeft); PostOrder(pRoot->_pRight); cout << pRoot->_data << " "; } BTNode* Create(string& Pre, string& In, int preL, int preR, int InL, int InR) { if (preL > preR) return nullptr; BTNode* pRoot = new BTNode(Pre[preL]); int k = 0; while (In[k] != pRoot->_data) { ++k; } int numLeft = k - InL; pRoot->_pLeft = Create(Pre, In, preL + 1, preL + numLeft, InL, k - 1); pRoot->_pRight = Create(Pre, In, preL + numLeft + 1, preR, k + 1, InR); return pRoot; } int main() { string In = "dgbaechf"; string Post = "gbdehfca"; string Pre = "adbgcefh"; BTNode* pNew2 = Create(Pre, In, 0, 7, 0, 7); PostOrder(pNew2); cout << endl; system("pause"); return 0; } 输出结果: `g b d e h f c a`
相关 重建二叉树 ![这里写图片描述][70] class TreeNode { int val; TreeNode left; Tre ゝ一世哀愁。/ 2022年05月26日 07:57/ 0 赞/ 199 阅读
相关 重建二叉树 二叉树重建 根据二叉树的前序遍历和中序遍历,重建二叉树。综合利用前序遍历和中序遍历的特点。 / 题目描述 输入某二叉树的前序遍历和中序遍历的 Love The Way You Lie/ 2022年05月14日 15:48/ 0 赞/ 232 阅读
相关 重建二叉树 重建二叉树 输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。如前序\{1,2,4,7,3,5,6,8 亦凉/ 2022年04月24日 13:54/ 0 赞/ 202 阅读
相关 重建二叉树 [重建二叉树][Link 1] 题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前 偏执的太偏执、/ 2022年03月25日 15:18/ 0 赞/ 161 阅读
相关 重建二叉树 时间限制:1秒 空间限制:32768K 热度指数:524408 算法知识视频讲解 题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序 阳光穿透心脏的1/2处/ 2022年03月11日 20:44/ 0 赞/ 204 阅读
相关 重建二叉树 题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列\{1,2,4,7,3,5,6 古城微笑少年丶/ 2022年03月06日 12:26/ 0 赞/ 245 阅读
相关 二叉树重建 给定二叉树的先序遍历序列和中序遍历序列,进行二叉树的重建以及后序遍历队列。 突然看到这个问题。。发现之前的想法都忘记了=\_=||,果然算法题一日不写手生啊,还是得好好坚持 淡淡的烟草味﹌/ 2021年12月14日 04:15/ 0 赞/ 295 阅读
相关 重建二叉树 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列\{1,2,4,7,3,5,6,8\}和中序 末蓝、/ 2021年11月16日 15:14/ 0 赞/ 265 阅读
相关 重建二叉树 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列\{1,2,4,7,3,5,6,8\}和中序 妖狐艹你老母/ 2021年09月23日 09:20/ 0 赞/ 386 阅读
还没有评论,来说两句吧...