发表评论取消回复
相关阅读
相关 【TensorFlow】微调(fine tuning)
一、使用slim及nets库,调用经典模型结构 > > (调用模型,自己训练) > > import tensorflow as tf > im...
相关 LLM-微调-全参数微调:Full-Param Fine-tuning(100% parameters)
fine-tuning的过程就是用训练好的参数(从已训练好的模型中获得)初始化自己的网络,然后用自己的数据接着训练,参数的调整方法与from scratch训练过程一样(梯度下
相关 迁移学习(Transfer Learning)、微调(Fine Tuning)
-------------------- -------------------- -------------------- 参考资料: [模型微调(Finetune
相关 Tensorflow模型保存、加载和Fine-tune(二)
前言 尝试过迁移学习的同学们都知道,`Tensorflow`的模型保存加载有不同格式,使用方法也不一样,新手会觉得乱七八糟,所以本文做一个梳理。从模型的保存到加载,再到使
相关 微调(Fine-tune)原理
微调(Fine-tune)原理 在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,
相关 微调(Fine-tune)原理
微调(Fine-tune)原理 在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,下面贴出
相关 为什么“Pretrained+Fine-tuning”
Deep Learning或者说CNN在图像识别这一领域取得了巨大的进步,那么自然我们就想将CNN应用到我们自己的数据集上,但这时通常就会面临一个问题:通常我们的dataset
相关 Caffe fine-tuning 微调网络
转自[Caffe fine-tuning 微调网络][Caffe fine-tuning] 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的
相关 迁移学习-微调(fine-tune)的注意事项:
选取微调形式的两个重要因素:新数据集的大小(size)和相似性(与预训练的数据集相比)。牢记卷积网络在提取特征时,前面的层所提取的更具一般性,后面的层更加具体,更倾向于原始的数
相关 CNN 之 fine-tune methods
CNN 的基本结构是由卷基层和全连接层构成的. 对于在大规模数据集(例如ImageNet)上训练好的网络, 我们可以利用它的权重来帮助我们实现我们的任务.从原理上来讲,随机初始
还没有评论,来说两句吧...