发表评论取消回复
相关阅读
相关 无监督学习算法中主成分分析(Principal Component Analysis)
主成分分析(Principal Component Analysis,简称PCA)是一种常用的无监督学习算法,用于对数据集进行降维处理。它通过线性变换将原始数据投影到一个新的特
相关 无监督学习算法中层次聚类(Hierarchical Clustering)
层次聚类是一种无监督学习算法,用于将一组数据点划分为不同的聚类簇。与其他聚类算法不同,层次聚类还能够构建一个层次化的聚类树,可以展示出数据点之间的层次结构关系。 层次聚类算法有
相关 监督学习算法中神经网络(Neural Networks)
神经网络是一种监督学习算法中常用的模型,它模拟了生物神经系统中神经元之间的连接和信息传递机制。它由多个神经元(节点)以及它们之间的连接组成,每个神经元接收来自其他神经元的输入,
相关 监督学习算法中随机森林(Random Forest)
随机森林(Random Forest)是一种监督学习算法,它是通过构建多个决策树来进行集成学习的一种方法。 随机森林的基本思想是,通过随机选择训练集的子集和特征的子集来构建多个
相关 A tutorial on Principal Components Analysis - 主成分分析(PCA)教程
A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal
相关 PCA--主成分分析(Principal components analysis)-最小平方误差解释
最小平方误差理论 [![clip\_image001][clip_image001]][clip_image001_clip_image001] 假设有这样的二维样本
相关 PCA--主成分分析(Principal components analysis)-最大方差解释
1. 问题 真实的训练数据总是存在[各种各样][Link 1]的问题: 1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”
相关 ICA--独立成分分析(Independent Component Analysis)
1. 问题: 1、上节提到的PCA是一种数据降维的方法,但是只对符合高斯分布的样本点比较有效,那么对于其他分布的样本,有没有主元分解的方法呢? 2、经典的鸡尾酒宴会
相关 PCA-主成分分析
一、PCA简介 1.背景 > 许多领域的研究与应用中,收集大量数据(提供了丰富的信息)以便进行分析寻找规律,但也在一定程度上增加了数据采集的工作量。更重要的是在多数情况
还没有评论,来说两句吧...