发表评论取消回复
相关阅读
相关 在神经网络训练过程中,为什么会出现梯度消失的问题?如何防止?
梯度消失的原因一般主要是:对于深度网络的激活函数的选择和全权初始化的问题 预防梯度消失的方法? 1、使用不同的激活函数,RELU,LRELU,ELU,maxout等激活函数
相关 神经网络训练过程中不收敛或者训练失败的原因
在面对模型不收敛的时候,首先要保证训练的次数够多。在训练过程中,loss并不是一直在下降,准确率一直在提升的,会有一些震荡存在。只要总体趋势是在收敛就行。若训练次数够多(一般上
相关 梯度消失_lstm如何解决梯度消失
顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值).其迭代公式为,其中代表梯度负方向,表示梯度方向上的搜索步长.梯度方向我们可以通过
相关 梯度消失和梯度爆炸问题详解
1.为什么使用梯度下降来优化神经网络参数? 反向传播(用于优化神网参数):根据损失函数计算的误差通过反向传播的方式,指导深度网络参数的更新优化。 采取反向传播的原因:首
相关 RNN的梯度消失与梯度爆炸问题
关于梯度消失和梯度爆炸问题,有几篇文章写得挺好的, 1.RNN 的梯度消失问题:[老宋的茶书会:RNN 的梯度消失问题][RNN] 2.RNN梯度消失和爆炸的原因:沉默中的
相关 RNN神经网络的梯度消失和梯度爆炸
[时间序列的反向传播算法][Link 1] 得到: ∂ h t ∂ h s = ∂ h t ∂ h t − 1 ∂ h t − 1 ∂ h t − 2 . . . ∂
相关 机器学习中梯度爆炸、梯度消失问题
正常损失训练图 ![watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 GRU结构为什么可以防止梯度消失
目录 what why what 所谓防止梯度消失,其实就是防止时间距离过大的两层神经元的参数w之间的联系过少,即 d W j / d W i
相关 梯度消失和梯度爆炸问题详解
1.为什么使用梯度下降来优化神经网络参数? 反向传播(用于优化神网参数):根据损失函数计算的误差通过反向传播的方式,指导深度网络参数的更新优化。 采取反向传播的原因:首
相关 TensorFlow神经网络的训练过程
batch\_size = n \ 首先选取一小部分数据作为batch,此处定义batch的大小为n; \ 每次读取一小部分数据作为当前的训练数据来执行反向传播算
还没有评论,来说两句吧...