属性表集合。

╰+攻爆jí腚メ 2024-02-18 19:25 75阅读 0赞

与Class文件中其他的数据项目要求严格的顺序、长度和内容不同,属性表集合的限制稍微宽松了一些,不再要求各个属性表具有严格顺序,并且只要不与已有属性名重复,任何人实现的编译器都可以向属性表具有严格顺序,并且只要不与已有属性名重复,任何人实现的编译器都可以向属性表中写入自己定义的属性信息,Java虚拟机运行时会忽略掉他不认识的属性。为了能正确解析Class文件,《java虚拟机规范》预定义21项虚拟机实现应当能识别的属性,具体内容见下表。下文中将对其中一些属性中的关键常用的部分进行讲解。















































































































属性名称 使用位置 含义
Code 方法表 Java代码编译成的字节码指令
ConstantValue 字段表 final关键字定义的常量值
Deprecated 类、方法表、字段表 被声明为deprecated的方法和字段
Exceptions 方法表 方法抛出的异常
EnclosingMethod 类文件 仅当一个类为局部类或者匿名类时才能拥有这个属性,这个属性用于标识这个类所在的外围方法
InnerClasses 类文件 内部类列表
LineNumberTable Code属性 Java源码的行号与字节码指令的对用关系
LocalVariableTable Code属性 方法的局部变量描述
StackMapTable Code属性 JDK1.6中新增的属性,供新的类型检查验证器(Type Checker)检查和处理目标方法的局部变量和操作数栈所需要的类型是否匹配
Signature 类、方法表、字段表 JDK1.5中新增的属性,这个属性用于支持泛型情况下的方法签名,在Java语言中,任何类、接口、初始化方法或成员的泛型签名如果包含了类型变量(Type Variables)或参数化类型(Parameterized Types),则Signature属性会为他记录泛型签名信息。由于Java的泛型采用擦除法实现,在为了避免类型信息被擦出后导致签名混乱,需要这个属性记录泛型中的相关信息
SourceFile 类文件 记录源文件名称
SourceDebugExtension 类文件 JDK 1.6中新增的属性,SourceDebugExtension属性用于存储额外的调试信息,譬如在进行JSP文件调试时,无法同构Java堆栈来定位到JSP文件的行号,JSR-45规范为这些非Java语言编写,却需要编译成字节码并运行在Java虚拟机中的程序提供了一个进行调试的标准机制,使用SourceDebugExtension属性就可以用于存储这个标准所新加入的调试信息
Synthetic 类、方法表、字段表 标识方法或字段为编译器自动生成的
LocalVariableTypeTable JDK 1.5中新增的属性,他使用特征签名代替描述符,是为了引入泛型语法之后能描述泛型参数化类型而添加
RuntimeVisibleAnnotations 类、方法表、字段表 JDK 1.5中新增的属性,为动态注解提供支持。RuntimeVisibleAnnotations属性用于指明哪些注解是运行时(实际上运行时就是进行反射调用)可见的
RuntimeInVisibleAnnotations 类、方法表、字段表 JDK 1.5新增的属性,与RuntimeVisibleAnnotations属性作用刚好相反,用于指明哪些注解是运行时不可见的
RuntimeVisibleParameter
Annotations
方法表 JDK 1.5新增的属性,作用与RuntimeVisibleAnnotations属性类似,只不过作用对象为方法参数
RuntimeInVisibleAnnotations
Annotations
方法表 JDK 1.5中新增的属性,作用与RuntimeInVisibleAnnotations属性类似,只不过作用对象为方法参数
AnnotationDefault 方法表 JDK 1.5中新增的属性,用于记录注解类元素的默认值
BootstrapMethods 类文件 JDK 1.7中新增的属性,用于保存invokedynamic指令引用的引导方法限定符

对于每个属性,他的名称需要从常量池中引用一个CONSTANT_Utf8_info类型的常量来表示,而属性的结构则是完全自定义的,只需要通过一个u4的长度属性去说明属性值所占用的位数即可。一个符合规则的属性表应该满足下表所定义的结构。


























类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u1 info attribute_length

Code属性

Java程序方法体中的代码经过Javac编译器处理后,最终变为字节码指令存储在Code属性内。Code属性出现在方法表的属性集合之中,但并非所有的方法表都必须存在这个属性,譬如接口或者抽象类中的方法就不存在Code属性,如果方法表有Code属性存在,那么他的结构将如下表所示。





























































类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 max_stack 1
u2 max_locals 1
u4 code_length 1
u1 code code_length
u2 exception_table_length 1
exception_info exception_table exception_table_length
u2 attributes_count 1
attribute_info attributes attributes_count

attribute_name_index是一项指向CONSTANT_Utf8_info型常量的索引,常量值固定为“Code”,他代表了该属性的属性名称,attribute_length指示了属性值的长度,由于属性名称索引与属性长度一共为6个字节,所以属性值的长度固定为整个属性表长度减少6个字节。

max_stack代表了操作数栈(Operand Stacks)深度的最大值。在方法执行的任意时刻,操作数栈都不会超过这个深度。虚拟机运行的时候需要根据这个值分配栈帧(Stack Frame)中的操作帧深度。

max_locals代表了局部变量表所需的存储空间。在这里,max_locals的单位是Slot,Slot是虚拟机为局部变量分配内存所使用的最小单位。对于byte、char、float、int、short、boolean和returnAddress等长度不超过32位的数据类型,每个局部变量占用1个Slot,而double和long这两种64位的数据类型则需要两个Slot来存放。方法参数(包括实例方法中的隐藏参数“this”)、显式异常处理器的参数(Exception Handler Parameter,就是try-catch语句中catch块所定义的异常)、方法体中定义的局部变量都需要使用局部变量表来存放。另外,并不是在方法中用到了多少个局部变量,就把这些局部变量所占Slot之和作为max_locals的值,原因是局部变量表中的Slot可以重用,当代码执行超出一个局部变量的作用域时,这个局部变量所占的Slot可以被其他局部变量所使用,Javac编译器会根据变量的作用域来分配Slot给各个变量使用,然后计算出max_locals的大小。

code_length和code用来存储java源程序编译后生成的字节码指令。code_length代表字节码长度,code是用于存储字节码指令的一系列字节流。既然叫字节码指令,那么每个指令就是一个u1类型的单字节,当虚拟机读取到code中的一个字节码时,就可以对应找出这个字节码代表的是什么指令,并且可以知道这条指令后面是否需要跟随参数,以及参数应当如何理解。我们知道一个u1数据类型的取值范围为0x00~0xFF,对应十进制的0~255,也就是一共可以表达256条指令,目前,Java虚拟机规范已经定义了其中约200条编码值对应的指令含义。

关于code_length,有一件值得注意的事情,虽然他是一个u4类型的长度值,理论上最大值可以达到2的32次方减1,但是虚拟机规范中明确限制了一个方法不允许超过65535条字节码指令,即他实际只使用了u2的长度,如果超过这个限制,Javac编译器也会拒绝编译。一般来讲,编写Java代码时只要不是刻意去编写一个超长的方法来为难编译器,是不太可能超过这个最大值的限制。但是,某些特殊情况,例如在编译一个很复杂的JSP文件时,某些JSP编译器会把JSP内容和页面输出的信息归并于一个方法之中,就可能因为方法生成字节码超长的原因而导致编译失败。

Code属性是Class文件中最重要的一个属性,如果把一个Java程序中的信息分为代码(Code,方法体里面的Java代码)和元数据(Metadata,包括类、字段、方法定义及其他信息)两部分,那么在整个Class文件中,Code属性用于描述代码,所有的其他数据项目都用于描述元数据。

以下面代码的TestClass.class文件为例,如下图所示。这时实例构造器“”方法的Code属性。他的操作数栈的最大深度和本地变量表的容量都为0x0001,字节码区域所占空间的长度为0x0005。虚拟机读取到字节码区域的长度后,按照顺序依次读入紧随的5个字节,并根据字节码指令翻译出所对应的字节码指令。翻译“2A B7 00 0A B1”的过程中:

  1. 读入2A,查表得0x2A对应的指令为aload_0,这个指令的含义是将第0个Slot中为reference类型的本地变量推送到操作数栈顶。
  2. 读入B7,查表得0xB7对应的指令为invokespecial,这条指令的作用是以栈顶的reference类型的数据所指向的对象作为方法接收者,调用此对象的实例构造器方法、private方法或者他的父类的方法。这个方法有一个u2类型的参数说明具体调用哪一个方法,他指向常量池中的一个CONSTANT_Methodref_info类型常量,即此方法的方法符号引用。
  3. 读入000A,这时invokespecial的参数,查常量吃得0x000A对应的常量为实例构造器“”方法的符号引用。
  4. 读入B1,查表得0xB1对应的指令为return,含义是返回此方法,并且返回值为void。这条指令执行后,当前方法结束。

public class TestClass {

private int m;

public int inc() {
return m + 1;
}

}

20180410092107087

这段字节码虽然很短,但是至少可以看出他的执行过程中的数据交换、方法调用等操作都是基于栈(操作栈)的。我们可以初步猜测:Java虚拟机执行字节码是基于栈的体系结构。但是与一般基于堆栈的零字节指令又不太一样,某些指令(如invokespecial)后面还会带有参数。

我们再次使用javap命令把此Class文件中另外一个方法的字节码指令也计算出来,结果如下面所示。

20180410092415285

如果大家注意到javap中输出的“Args_size”的值,可能会有疑问:这个类有两个方法——实例构造器() 和inc(),这两个方法很明显都是没有参数的,为什么Args_size会为1?而且无论是在参数列表里还是方法体内,都没有定义任何局部变量,那Locals又为什么会等于1?如果有这样的疑问,大家可能是忽略了一点:在任何实例方法里面,都可以通过“this”关键字访问到此方法所属的对象。这个访问机制对Java程序的编写很重要,而他的实现却非常简单,仅仅是通过javac编译器编译的时候把对this关键字的访问转变为对一个普通方法参数的访问,然后在虚拟机调用实例方法时自动传入此参数而已。因此在实例方法的局部变量表中至少会存在一个指向当前对象实例的局部变量,局部变量表中也会预留出第一个Slot位来存放对象实例的引用,方法参数值从1开始计算。这个处理只对实例方法有效,如果上面代码中的inc()方法声明为static,那Args_size就不会等于1而是等于0了。

在字节码指令之后的是这个方法的显示异常处理表(下文简称异常表)集合,异常表对于Code属性来说并不是必须存在的,如上面就没有异常表生成。

异常表的格式如下表所示,他包含4个字段,这些字段的含义为:如果当字节码在第start_pc行到end_pc行之间(不含第end_pc行)出现了类型为catch_type或者其子类的异常(catch_type为指向一个CONSTANT_Class_info型常量的索引),则转到第handler_pc行继续处理。当catch_type的值为0时,代表任意异常情况都需要转向到handler_pc处进行处理。






























类型 名称 数量 类型 名称 数量
u2 start_pc 1 u2 handler_pc 1
u2 end_pc 1 u2 catch_type 1

异常表实际上是Java代码的一部分,编译器使用异常表而不是简单地跳转命令来实现Java异常及finally处理机制。

下面代码是一段演示异常表如何运作的例子,这段代码主要演示了在字节码层面中try-catch-finally是如何实现的。在阅读字节码之前,大家不妨先看看下面的Java源码,想一下这段代码的返回值在出现异常和不出现异常的情况下分别应该是多少?

20180410093622967

编译器为这段Java源码生成了3条异常表记录,对应3条可能出现的代码执行路径。从Java代码的语义上讲,这3条执行路径分别为:

  • 如果try语句块中出现属于Exception或其子类的异常,则转到catch语句块的处理。
  • 如果try语句块中出现不属于Exception或其子类的异常,则转到finally语句块处理。
  • 如果catch语句块中出现任何异常,则转到finally语句块处理。

返回到我们上面提到的问题,这段代码的返回值应该是多少?对Java语言熟悉的应该很容易说出答案:如果没有出现异常,返回值是1;如果出现了Exception异常,返回值是2;如果出现了Exception以外的异常,方法非正常退出,没有返回值。我们一起来分你想一下字节码的执行过程,从字节码的层面上看看为何会有这样的返回结果。

字节码中第0~4行所做的操作就是将整数1赋值给变量x,并且将此时x的值复制一份副本到最后一个本地变量表的Slot中(这个Slot里面的值在ireturn指令执行前将会重新读到操作栈顶,作为方法返回值使用。这里给slot起了个名字:returnValue)。如果这时没有出现异常,则会继续走到第5~9行,将变量x赋值为3,然后将之保存在returnValue中的整数1读入到操作栈顶,最后ireturn指令会以int形式返回操作栈顶中的值,方法结束。如果出现了异常,PC寄存器指针转到第10行,第10~20行所做的事情是将2赋值给变量x,然后将变量x此时的值赋给returnValue,最后再将变量x的值改为3.方法返回前同样将returnValue中停留的整数2都到了操作栈顶。从第21行开始的代码,作用是变量x的值赋为3,并将栈顶的异常抛出,方法结束。

尽管大家都知道这段代码出现异常的概率非常小,但并不影响他为我们演示异常表的作用。

Exceptions属性

这里的Exceptions属性是在方法表与Code属性平级的一项属性。Exceptions属性的作用是列举出方法中可能抛出的受查异常(Checked Exceptions),也就是说方法描述时在throws关键字啊后面列举的异常。他的结构见下表。






























类型 名称 数量 类型 名称 数量
u2 attribute_name_index 1 u2 number_of_exceptions 1
u4 attribute_length 1 u2 exception_index_table number_of_exceptions

Exceptions属性中的number_of_exceptions项表示方法可能抛出number_of_exceptions种受查异常,每一种受查异常使用一个exception_index_table项表示,exception_index_table是一个指向常量池中CONSTANT_Class_info型常量的索引,代表了该受查异常的类型。

LineNumberTable属性

LineNumberTable属性用于描述Java源码行号与字节码行号(字节码的偏移量)之间的对应关系。他并不是运行时必须的属性,但默认生成到Class文件之中,可以在Javac中分别使用-g : none或-g : lines选项来取消或要求生成这项信息。如果选择不生成LineNumberTable属性,对程序运行产生的最主要的影响就是当抛出异常时,堆栈中将不会显示出错的行号,并且在调试程序的时候,也无法按照源码行来设置断点。LineNumberTable属性的结构见下表。































类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 line_number_table_length 1
line_number_info line_number_table line_number_table_length

line_number_table是一个数量为line_number_table_length、类型为line_number_info的集合,line_number_info表包括了start_pc和line_number两个u2类型的数据项,前者是字节码行号,后者是Java源码行号。

LocalVariableTable属性

LocalVariableTable属性用于描述栈帧中局部变量表中的变量与Java源码中定义的变量之间的关系,她也不是运行时必须的属性,但默认会生成到Class文件之中,可以在Javac中分别使用-g : none或-g :vars选项来取消或要求生成这项信息。乳沟没有生成这项属性,最大的影响就是当前其他人引用这个方法时,所有的参数名称都将会丢失,IDE将会使用诸如arg0、arg1之类的占位符代替原有的参数名,这对程序运行没有影响,但是会对代码编写带来较大不便,而且在调试期间无法根据参数名称从上下文中获得参数值。LocalVariableTable属性的结构见下表。
























































类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 local_variable_table_length 1
local_variable_info local_variable_table local_variable_table_length
u2 start_pc 1
u2 length 1
u2 name_index 1
u2 descriptor_index 1
u2 index 1

start_pc和length属性分别代表了这个局部变量的生命周期开始地字节码偏移量及其作用范围覆盖的长度,两者结合起来就是这个局部变量在字节码之中的作用域范围。

name_index和descriptor_index都是指向常量池中CONSTANT_Utf8_info型常量的索引,分别代表了局部变量的名称以及这个局部变量的描述符。

index是这个局部变量在栈帧局部变量表中Slot的位置。当这个变量数据类型是64位类型时(double和long),他占用的Slot为index和index+1两个。

顺便提一下,在JDK1.5引入泛型之后,LocalVariableTable属性增加了一个“姐妹属性”:LocalVariableTypeTable,这个新增的属性结构与LocalVariableTable非常相似,仅仅是吧记录的字段描述符的descriptor_index替换成了字段的特征签名(Signature),对于非泛型类型来说,描述符和特征签名能描述的信息是基本一致的,但是泛型引入后,由于描述符中反省的参数化类型被擦除掉,描述符就不能准确的描述泛型类型了,因此出现了LocalVariableTypeTable。

SourceFile属性

SourceFile属性用于记录生成这个Class文件的源码文件名称。这个属性也是可选的,可以分别使用Javac的-g :none或=g : source选项来关闭或要求生成这项信息。在Java中,对于大多数的类来说,类名和文件名是一致的,但是有一些特殊情况(如内部类)例外。如果不生成这项属性,当抛出异常时,堆栈中将不会显示出错代码所属的文件名。这个属性是一个定长的属性,其结构见下表。


























类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 sourcefile_index  

sourcefile_index数据项是指向常量池中CONSTANT_Utf8_info型常量的索引,常量值是源码我呢见的文件名。

ConstantValue属性

ConstantValue属性的作用是通知虚拟机自动为静态变量赋值。只有被static关键字修饰的变量(类变量)才可以使用这项属性。类似“int x = 123”和“static int x=123”这样的变量定义在Java程序中是非常常见的事情,但虚拟机对这两种变量赋值的方法和时刻都有所不同。对于非static类型的变量(也就是实例变量)的赋值是在实例构造器方法中进行的;而对于类变量,则有两种方式可以选择:在类构造器方法中或者使用ConstantValue属性。目前Sun Javac编译器的选择是:如果同时使用final和static来修饰一个变量(按照习惯,这里称“常量”更贴切),并且这个变量的数据类型是基本类型或者java.lang.String的话,就生成ConstantValue属性来进行初始化,如果这个变量没有被final修饰,或者并非基本类型及字符串,则将会选择在方法中进行初始化。

虽然有final关键字才更符合“ConstantValue”的语义,但虚拟机规范中并没有强制要求字段必须设置了ACC_FINAL标志,只要求了有ConstantValue属性的字段必须设置ACC_STATIC标志而已,对final关键字的要求是javac编译器自己加入的限制。而对ConstantValue属性值只能限于基本类型和String,不过不认为这是什么限制,因为此属性的属性值只是一个常量池的索引号,由于Class文件格式的常量类型中只有与基本属性和字符串相对应的字面量,所以就算ConstantValue属性在想支持别的类型也无能为力。ConstantValue属性的结构见下表。


























类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 constantvalue_index 1

从数据结构中可以看出,ConstantValue属性是一个定长属性,他的attribute_length数据项值必须固定为2。constantvalue_index数据项代表了常量池中一个字面量常量的引用,根据字段类型的不同,字面量可以是CONSTANT_Long_info、CONSTANT_Float_info、CONSTANT_Double_info、CONSTANT_Integer_info、CONSTANT_String_info常量中的一种。

InnerClasses属性

InnerClasses属性用于记录内部类与宿主类之间的关联。如果一个类中定义了内部类,那编译器将会为他以及他所包含的内部类生成InnerClasses属性。该属性的结构见下表。































类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 number_of_class 1
inner_classes_info inner_class number_of_classes

数据项number_of_classes代表需要记录多少个内部类信息,每一个内部类的信息都由一个inner_classes_info表进行描述。inner_classes_info的结构见下表。































类型 名称 数量
u2 inner_class_info_index 1
u2 outer_class_info_index 1
u2 inner_name_index 1
u2 inner_class_access_info 1

inner_name_index是指向常量池中CONSTANT_Utf8_info型常量的索引,代表这个内部类的名称,如果是匿名内部类,那么这项值为0.

inner_class_access_flags是内部类的访问标志,类似于类的access_flags,他的取值范围见下表。





























































标志名称 标志值 含义
ACC_PUBLIC 0x0001 内部类是否为public
ACC_PRIVATE 0x0002 内部类是否为private
ACC_PROTECTED 0x0004 内部类是否为protected
ACC_STATIC 0x0008 内部类是否为static
ACC_FINAL 0x0010 内部类是否为final
ACC_INTERFACE 0x0020 内部类是否为synchronized
ACC_ABSTRACT 0x0400 内部类是否为abstract
ACC_SYNTHETIC 0x1000 内部类是否嫔妃由用户代码产生的
ACC_ANNOTATION 0x2000 内部类是否是一个注解
ACC_ENUM 0x4000 内部类是否是一个枚举

Deprecated及Synthetic属性

Deprecated和Synthetic两个属性都属于标志类型的布尔属性,只存在有和没有的区别,没有属性值的概念。

Deprecated属性用于表示每个类、字段或者方法,已经被程序作者定位不在推荐使用,他可以通过在代码中使用@deprecated注释进行设置。

Synthetic属性代表此字段或者方法并不是由Java源码直接产生的,而是由编译器自行添加的,在JDK 1.5之后,标识一个类、字段或者方法是编译器自动产生的,也可以设置他们访问标志中的ACC_SYNTHETIC标志位,其中最典型的例子就是Bridge Method。所有由非用户代码产生的类、方法及字段都应当至少设置Synthetic属性和ACC_SYNTHETIC标志位中的一项,唯一的例外是实例构造器“”方法和类构造器“”方法。

Deprecated和Synthetic属性的结构非常简单,见下表。





















类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1

其中attribute_length数据项的值必须为0x00000000,因为没有任何属性值需要设置。

StackMapTable属性

StackMapTable属性在JDK 1.6发布周增加到了Class文件规范中,他是一个复杂的变长属性,位于Code属性的属性表,这个属性会在虚拟机类加载的字节码验证阶段被新类型检查验证器(Type Checker)使用,目的在于代替以前比较消耗性能的基于数据流分析的类型推导验证器。

这个类型检查验证器最初来源于Sheng Liang(听名字似乎是虚拟机团队中的华裔成员)为Java ME CLDC实现的字节码验证器。新的验证器在同样能保证Class文件合法性的前提下,省略了在运行期通过数据流分析确认字节码的行为逻辑合法性的步骤,而是在编译阶段将一系列的验证类型(Verification Types)直接记录在Class文件之中,通过检查这些验证类型代替了类型推导过程,从而大幅提升了字节码验证的性能。这个验证器在JDK 1.6中首次提供,并在JDK 1.7中强制代替原本基于类型推断的字节码验证器。

StackMapTable属性中包含零至多个栈映射栈(Stack Map Frames),每个栈映射帧都显示或隐式的代表了一个字节码偏移量,用于表示该执行到该字节码时局部变量表和操作数栈的验证类型。类型检查验证器会通过检查目标方法的局部变量和操作数栈所需要的类型来确定一段字节码指令是否符合逻辑约束。StackMapTable属性的结构见下表。































类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 number_of_entries 1
stack_map_frame stack_map_frame_entries number_of_entries

《Java虚拟机规范(Java SE 7版)》明确规定:在版本号大于或等于50.0的Class文件中,如果方法的Code属性中没有附带StackMapTable属性,那就意味着他带有一个隐式的StackMap属性。这个StackMap属性的作用等同于number_of_entries值为0的StackMapTable属性。一个方法的Code属性最多只能有一个StackMapTable属性,否则将抛出ClassFormatError异常。

Signature属性

Signature属性在JDK 1.5发布后增加到了Class文件规范之中,他是一个可选的定长属性,可以出现于类、属性表和方法表结构的属性表中。在JDK 1.5大幅增强了Java语言的语法,在此之后,任何类、接口、初始化方法或成员的泛型签名如果包含饿了类型变量(Type Variables)或参数化类型(Parameterized Types),则Signature属性会为他记录泛型签名信息。之所以要专门使用这样一个属性去记录泛型类型,是因为Java语言的泛型采用的是擦除法实现的伪泛型,在字节码(Code属性)中,泛型信息编译(类型变量、参数化类型)之后都统统被擦除掉。使用擦除法的好处是实现简单(主要修改Javac编译器,虚拟机内部只做了很少的改动)、非常容易实现Backport,运行期也能够节省一些类型所占的内存空间。但坏处是运行期就无法像C#等有真泛型支持的语言那样,将泛型类型与用户定义的普通类型同等对待,例如运行期做反射时无法获得到泛型信息。Signature属性就是为了弥补这个缺陷而增设的,现在Java的反射API能够获取泛型类型,最终的数据来源也就是这个属性。Signature属性的结构见下表。


























类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 signature_index 1

其中signature_index项的值必须是一个对常量池的有效索引。常量池在该索引处的项必须是CONSTANT_Utf8_info结构,表示类签名、方法类型签名或字段类型签名。如果当前的Signature属性是类文件的属性,则这个结构表示类签名,如果当前的Signature属性是方法表的属性,则这个结构表示方法类型签名,如果当前Signature属性是字段表的属性,则这个结构表示字段类型签名。

BootstrapMethods属性

BootstrapMethods属性在JDK 1.7发布后增加到了Class文件规范之中,他是一个复杂的变长属性,位于类文件的属性表中。这个属性用于保存invokedynamic指令引用的引导方法限定符。《Java虚拟机规范(Java SE 7版)》规定,如果某个类文件结构的常量池中曾经出现过CONSTANT_InvokeDynamic_info类型的常量,那么这个类文件的属性表中必须存在一个明确地BootstrapMethods属性,另外,即使CONSTANT_InvokeDynamic_info类型的常量在常量池中出现过多次,类文件的属性表中最多也只能一个BootstrapMethods属性。BootstrapMethods属性与JSR-292中的InvokeDynamic指令和java.lang.Invoke包关系非常密切。

目前的Javac暂时无法生成InvokeDynamic指令和BootstrapMethods属性,必须通过一些非常规的手段才能使用到他们,也许在不久的将来,等JSR-292更加成熟一些,这种状况就会改变。BootstrapMethods属性的结构见下表。































类型 名称 数量
u2 attribute_name_index 1
u4 attribute_length 1
u2 num_bootstrap_methods 1
bootstrap_method bootstrap_methods num_bootstrap_methods

其中引用到的bootstrap_method结构见下表。


























类型 名称 数量
u2 bootstrap_method_ref 1
u2 num_bootstrap_arguments 1
u2 bootstrap_arguments num_bootstrap_arguments

BootstrapMethods属性中,num_bootstrap_methods项的值给出了bootstrap_methods[]数组中的引导方法限定符的数量。而bootstrap_methods[]数组的每个成员包含了一个指向常量池CONSTANT_MethodHandle结构的索引值,他代表了一个引导方法,还包含了这个引导方法静态参数的序列(可能为空)。bootstrap_methods[]数组中的每个成员必须包含以下3项内容。

  • bootstrap_method_ref:bootstrap_method_ref项的值必须是一个对常量池的有效索引。常量池在该索引处的值必须是一个CONSTANT_MethodHandle_info结构。
  • num_bootstrap_arguments:num_bootstrap_arguments项的值给出了bootstrap_arguments[]数组成员的数量。
  • bootstrap_arguments[]:bootstrap_arguments[]数组的每个成员必须是一个对常量池的有效索引。常量池在该索引处必须是下列结构之一:CONSTANT_String_info、CONSTANT_Class_info、CONSTANT_Integer_info、CONSTANT_Long_info、CONSTANT_Float_info、CONSTANT_Double_info、CONSTANT_MethodHandle_info或CONSTANT_MethodType_info。

发表评论

表情:
评论列表 (有 0 条评论,75人围观)

还没有评论,来说两句吧...

相关阅读

    相关 属性集合

    与Class文件中其他的数据项目要求严格的顺序、长度和内容不同,属性表集合的限制稍微宽松了一些,不再要求各个属性表具有严格顺序,并且只要不与已有属性名重复,任何人实现的编译器都

    相关 class 属性

    一 class 属性计数器 attributes\_count 的值表示当前 class 文件属性表的成员个数。属性表中每一项都是一个 attribute\_info 结