发表评论取消回复
相关阅读
相关 交叉熵损失CrossEntropyLoss
在各种深度学习框架中,我们最常用的损失函数就是交叉熵,熵是用来描述一个系统的混乱程度,通过交叉熵我们就能够确定预测数据与真实数据的相近程度。交叉熵越小,表示数据越接近真实样本。
相关 ignore_index:交叉熵损失中的ignore_index参数【torch.nn.functional.cross_entropy的ignore_index】【默认-100】
1. [交叉熵损失][Link 1] CrossEntropyLoss CrossEntropyLoss 交叉熵损失可函数以用于分类或者分割任务中,这里主要介绍分割任务
相关 softmax交叉熵损失求导
`softmax`为激活函数,`C = softmax(o)`为输出,真实标签为`y`, 用交叉熵作为损失函数`L`,给出损失函数定义,并且给出损失函数`L`对`o`的求导
相关 交叉熵损失函数原理详解
多分类中,只对目标正样本求loss,其余不管。 知乎的这篇文章讲的也挺好: [https://zhuanlan.zhihu.com/p/35709485][https_zh
相关 交叉熵损失函数
一、香农熵 香农熵 1948 年,香农提出了“ [信息熵][Link 1]”(shāng) 的概念,才解决了对信息的量化度量问题。 一条
相关 TensorFlow:交叉熵损失函数
基础 损失函数 \[[机器学习中的损失函数][Link 1]\] 示例说明:计算multilabel时的BinaryCrossentropy tf.kera
相关 平方损失函数与交叉熵损失函数
1. 前言 在机器学习中学习模型的参数是通过不断损失函数的值来实现的。对于机器学习中常见的损失函数有:平方损失函数与交叉熵损失函数。在本文中将讲述两者含义与响应的运用区别
相关 神经网络的交叉熵损失函数
常见损失函数 0-1损失函数 L(Y,f(X))=\{ 1,0Y != f(X)Y = f(X) 平方损失函数 L(Y,f(X))=(
相关 交叉熵损失函数
1. Cross entropy 交叉熵损失函数用于二分类损失函数的计算,其公式为: ![573274-20190728165253168-15289458.png][]
相关 交叉熵损失函数
> 监督学习的两大种类是分类问题和回归问题。 > > 交叉熵损失函数主要应用于分类问题。 > 先上实现代码,这个函数的功能就是计算labels和logits之间的交叉熵。
还没有评论,来说两句吧...