发表评论取消回复
相关阅读
相关 Flink 优化 (四) --------- 数据倾斜
目录 一、判断是否存在数据倾斜 二、数据倾斜的解决 1. keyBy 后的聚合操作存在数据倾斜 2. keyBy 之前发生数据倾斜
相关 FLINK数据倾斜的解决思路
排查思路 1、查看该任务是否有反压现象 利用Flink WebUi查看任务是否有反压情况,结果正常,没有出现反压现象。 如果有反压,一般是红色节点往后的一个节点效
相关 Hadoop解决数据倾斜的方法
1)提前在map进行combine,减少传输的数据量 在Mapper加上combiner相当于提前进行reduce,即把一个Mapper中的相同key进行了聚合,减少shuf
相关 Flink中的Window出现了数据倾斜,你有什么解决办法?
window产生数据倾斜指的是数据在不同的窗口内堆积的数据量相差过多。本质上产生这种情况的原因是数据源头发送的数据量速度不同导致的。出现这种情况一般通过两种方式来解决: 在数
相关 数据倾斜产生的原因以及解决思路
我们以Spark和Hive的使用场景为例。 他们在做数据运算的时候会涉及到,count distinct、group by、join on等操作,这些都会触发Shuffle
相关 spark 数据倾斜解决方案
1. 数据倾斜的原理 在执行shuffle操作的时候,按照key,来进行values的数据的输出、拉取、和聚合的, 同一个key的values,一定是分配到一个reduce
相关 Hive数据倾斜解决办法
[http://www.mamicode.com/info-detail-500353.html][http_www.mamicode.com_info-detail-5003
相关 Spark数据倾斜解决方案
数据倾斜的原因: 在数据中存在一个或少数数量key对应的数据量特别大,导致在spark处理task进行shuffle的时候,大部分task都很快的执行
相关 Flink 数据倾斜 解决方法
1.数据倾斜的原理和影响 1.1 原理 数据倾斜就是数据的分布严重不均,造成一部分数据很多,一部分数据很少的局面。数据分布理论上都是倾斜的,符合“二八原理”:例如8
相关 MapReduce解决数据倾斜
可以从一下三个方面入手: 一、业务逻辑方面 1、map端的key值进行hash的时候,可能得到的hash值相同,然而相同的hash值会分配给同一个reduce函数去处理,因
还没有评论,来说两句吧...