发表评论取消回复
相关阅读
相关 监督学习算法中随机森林(Random Forest)
随机森林(Random Forest)是一种监督学习算法,它是通过构建多个决策树来进行集成学习的一种方法。 随机森林的基本思想是,通过随机选择训练集的子集和特征的子集来构建多个
相关 17. 机器学习 - 随机森林
![茶桁的AI秘籍 核心基础 17][AI_ _ 17] Hi,你好。我是茶桁。 我们之前那一节课讲了决策树,说了决策树的优点,也说了其缺点。 决策树实现起来比较简单,解
相关 机器学习-有监督学习-集成学习方法(二):Bootstrap->Bagging->Random Forest(随机森林)【每颗树建造:从N个样本有放回抽样N次作为训练集;随机选m个特征用于该树的训练】
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 机器学习之决策树和随机森林
一、决策树 决策树学习是[机器学习][Link 1]中一类常用的[算法][Link 2]。在决策树中,根节点包含样本全集。每个非叶子节点表示一种对样本的分割,通常对应一个
相关 机器学习之随机森林
随机森林是基于决策树的基础上延伸的,所以学会了决策树,随机森林非常好理解 原理:[https://blog.csdn.net/mao\_xiao\_feng/article/
相关 随机森林与决策树--机器学习
决策树 决策树是机器学习最基本的模型,在不考虑其他复杂情况下,我们可以用一句话来描述决策树:如果得分大于等于60分,那么你及格了。 这是一个最最简单的决策树的模型,我们
相关 python机器学习04:决策树与随机森林算法
1.决策树 1.决策树的基本原理: 决策树是一种在分类与回归中都有着非常广泛应用的算法,它的原理是通过一系列问题进行if/else的推导,最终实现决策。 2.决
还没有评论,来说两句吧...