决策树、随机森林和极度随机森林的交叉验证评分
部分代码:
from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
def excel_one_line_to_list():
##创建100个类共10000个样本,每个样本10个特征
X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)
## 决策树(scores1交叉验证评分)
clf1 = DecisionTreeClassifier(max_depth=None, min_samples_split=2,random_state=0)
......
print(scores1.mean())
## 随机森林(scores1交叉验证评分)
clf2 = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
......
print(scores2.mean())
## 极度随机森林(scores1交叉验证评分)
clf3 = ExtraTreesClassifier(n_estimators=10,
......
完整代码链接:决策树、随机森林和极度随机森林的交叉验证评分
还没有评论,来说两句吧...