Pandas-数据结构-DataFrame(七):添加元素、修改元素、删除元素

一时失言乱红尘 2023-09-29 10:09 67阅读 0赞

一、添加元素

新增列/行并赋值

  1. import numpy as np
  2. import pandas as pd
  3. df = pd.DataFrame(np.random.rand(16).reshape(4, 4) * 100,
  4. columns=['a', 'b', 'c', 'd'])
  5. print("df = \n", df)
  6. print("-" * 100)
  7. # 新增列/行并赋值
  8. df['e'] = 10
  9. df.loc[4] = 20
  10. print("df = \n", df)

打印结果:

  1. df =
  2. a b c d
  3. 0 39.621173 36.363400 21.042923 36.160210
  4. 1 39.775787 32.010771 86.375488 15.035171
  5. 2 49.328983 58.402799 12.979410 59.408702
  6. 3 21.167906 91.684124 22.953356 98.618665
  7. ----------------------------------------------------------------------------------------------------
  8. df =
  9. a b c d e
  10. 0 39.621173 36.363400 21.042923 36.160210 10
  11. 1 39.775787 32.010771 86.375488 15.035171 10
  12. 2 49.328983 58.402799 12.979410 59.408702 10
  13. 3 21.167906 91.684124 22.953356 98.618665 10
  14. 4 20.000000 20.000000 20.000000 20.000000 20

二、修改元素

  1. import numpy as np
  2. import pandas as pd
  3. df = pd.DataFrame(np.random.rand(16).reshape(4, 4) * 100,
  4. columns=['a', 'b', 'c', 'd'])
  5. print("df = \n", df)
  6. print("-" * 100)
  7. # 索引后直接修改值
  8. df[['a', 'c']] = 100
  9. print("df = \n", df)

打印结果:

  1. df =
  2. a b c d
  3. 0 39.621173 36.363400 21.042923 36.160210
  4. 1 39.775787 32.010771 86.375488 15.035171
  5. 2 49.328983 58.402799 12.979410 59.408702
  6. 3 21.167906 91.684124 22.953356 98.618665
  7. ----------------------------------------------------------------------------------------------------
  8. df =
  9. a b c d e
  10. 0 100 36.363400 100 36.160210 10
  11. 1 100 32.010771 100 15.035171 10
  12. 2 100 58.402799 100 59.408702 10
  13. 3 100 91.684124 100 98.618665 10
  14. 4 100 20.000000 100 20.000000 20

三、删除:del / drop()

删除:del / drop()

  • del:为原地删除
  • df.drop([1, 2]:返回新对象,其中的索引为名词索引而非位置下标索引

    import numpy as np
    import pandas as pd

    删除 del / drop()

    df = pd.DataFrame(np.random.rand(16).reshape(4, 4) * 100,

    1. index=[2, 1, 3, 0],
    2. columns=['a', 'b', 'c', 'd'])

    print(“df = \n”, df)
    print(“-“ * 50)

    del语句 - 删除列

    del df[‘a’]
    print(“删除第a列后:df = \n”, df)
    print(“-“ * 100)

    drop()删除行,inplace=False → 删除后生成新的数据,不改变原数据

    df2 = df.drop(0)
    df3 = df.drop([1, 2])
    print(“df = \n”, df)
    print(“-“ 50)
    print(“删除第0行后:df2 = \n”, df2)
    print(“-“
    50)
    print(“删除第1、2行后:df3 = \n”, df3)
    print(“-“ * 100)

    drop()删除列,需要加上axis = 1,inplace=False → 删除后生成新的数据,不改变原数据

    df4 = df.drop([‘d’], axis=1)
    print(“df = \n”, df)
    print(“-“ * 50)
    print(“df4 = \n”, df4)

打印结果:

  1. df =
  2. a b c d
  3. 2 97.538939 28.115040 25.287657 82.030868
  4. 1 58.227305 40.422558 58.629622 19.732153
  5. 3 39.179936 57.157078 33.694614 68.138918
  6. 0 57.069357 35.340227 91.023129 69.587282
  7. --------------------------------------------------
  8. 删除第a列后:df =
  9. b c d
  10. 2 28.115040 25.287657 82.030868
  11. 1 40.422558 58.629622 19.732153
  12. 3 57.157078 33.694614 68.138918
  13. 0 35.340227 91.023129 69.587282
  14. ----------------------------------------------------------------------------------------------------
  15. df =
  16. b c d
  17. 2 28.115040 25.287657 82.030868
  18. 1 40.422558 58.629622 19.732153
  19. 3 57.157078 33.694614 68.138918
  20. 0 35.340227 91.023129 69.587282
  21. --------------------------------------------------
  22. 删除第0行后:df2 =
  23. b c d
  24. 2 28.115040 25.287657 82.030868
  25. 1 40.422558 58.629622 19.732153
  26. 3 57.157078 33.694614 68.138918
  27. --------------------------------------------------
  28. 删除第12行后:df3 =
  29. b c d
  30. 3 57.157078 33.694614 68.138918
  31. 0 35.340227 91.023129 69.587282
  32. ----------------------------------------------------------------------------------------------------
  33. df =
  34. b c d
  35. 2 28.115040 25.287657 82.030868
  36. 1 40.422558 58.629622 19.732153
  37. 3 57.157078 33.694614 68.138918
  38. 0 35.340227 91.023129 69.587282
  39. --------------------------------------------------
  40. df4 =
  41. b c
  42. 2 28.115040 25.287657
  43. 1 40.422558 58.629622
  44. 3 57.157078 33.694614
  45. 0 35.340227 91.023129
  46. Process finished with exit code 0

发表评论

表情:
评论列表 (有 0 条评论,67人围观)

还没有评论,来说两句吧...

相关阅读