发表评论取消回复
相关阅读
相关 机器学习 模型的评估与选择-欠拟合与过拟合
欠拟合与过拟合 1.欠拟合 欠拟合:未能学好训练样本的普遍规律,训练误差较大。主要原因是:模型过于简单,没有较好的数据拟合能力,泛化能力较弱。 2.过拟合
相关 【机器学习】一、机器学习概述与模型的评估、选择
机器学习简介 由来 阿瑟.萨缪尔Arthur Samuel,1952年研制了一个具有自学习能力的西洋跳棋程序,1956年应约翰.麦卡锡John McCarthy(人
相关 机器学习与数据挖掘-educoder-实训作业(模型评估、选择与验证)
目录 第1关:为什么要有训练集与测试集 第2关:欠拟合与过拟合 第3关:偏差与方差 第4关:验证集与交叉验证 第5关:衡量回归的性能指标
相关 k近邻算法-2.模型评估与选择
模型评估与选择 如何评价一个算法的性能? 将所有样本数据作为训练数据集参与模型的创建,得到的模型如果很差,在真实环境中会造成损失,而真实环境难以拿到真实的归类。此时我
相关 第二章——模型评估与选择
2.1 经验误差与过拟合 先介绍几个专业名词: 错误率(error rate): 通常我们把分类错误的样本数占样本总数的比例称为错误率;即如果在 m m m个样本中有
相关 西瓜书学习记录-模型评估与选择(第二章)
西瓜书学习记录-模型评估与选择 第二章啦 ![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text
相关 机器学习-02 模型的评估与选择
2.1 误差与过拟合 我们将学习器对样本的实际预测结果与样本的真实值之间的差异成为:误差(error)。定义: 在训练集上的误差称为训练误差(training e
相关 机器学习之模型评估与模型选择(学习笔记)
时间:2014.06.26 地点:基地 \-----------------------------------------------------------------
相关 Keras:模型评估
keras模型评估 keras能用的模型评估不多,有的可能是这些评估在keras框架下不准确,如果要用,可以使用tensorflow或者sklearn中的评估模型。
相关 机器学习之模型评估与选择
经验误差与泛化误差 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m;相
还没有评论,来说两句吧...