Leetcode刷题java之146. LRU缓存机制(一天一道编程题之三十三天)
执行结果:
通过
显示详情
执行用时 :29 ms, 在所有 Java 提交中击败了41.46% 的用户
内存消耗 :53.5 MB, 在所有 Java 提交中击败了71.48%的用户
题目:
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:
你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lru-cache
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
参考:
https://leetcode-cn.com/problems/lru-cache/solution/lru-ce-lue-xiang-jie-he-shi-xian-by-labuladong/
class Node {
public int key, val;
public Node next, prev;
public Node(int k, int v) {
this.key = k;
this.val = v;
}
}
class DoubleList {
private Node head, tail; // 头尾虚节点
private int size; // 链表元素数
public DoubleList() {
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.prev = head;
size = 0;
}
// 在链表头部添加节点 x
public void addFirst(Node x) {
x.next = head.next;
x.prev = head;
head.next.prev = x;
head.next = x;
size++;
}
// 删除链表中的 x 节点(x 一定存在)
public void remove(Node x) {
x.prev.next = x.next;
x.next.prev = x.prev;
size--;
}
// 删除链表中最后一个节点,并返回该节点
public Node removeLast() {
if (tail.prev == head)
return null;
Node last = tail.prev;
remove(last);
return last;
}
// 返回链表长度
public int size() { return size; }
}
class LRUCache {
// key -> Node(key, val)
private HashMap<Integer, Node> map;
// Node(k1, v1) <-> Node(k2, v2)...
private DoubleList cache;
// 最大容量
private int cap;
public LRUCache(int capacity) {
this.cap = capacity;
map = new HashMap<>();
cache = new DoubleList();
}
public int get(int key) {
if (!map.containsKey(key))
return -1;
int val = map.get(key).val;
// 利用 put 方法把该数据提前
put(key, val);
return val;
}
public void put(int key, int val) {
// 先把新节点 x 做出来
Node x = new Node(key, val);
if (map.containsKey(key)) {
// 删除旧的节点,新的插到头部
cache.remove(map.get(key));
cache.addFirst(x);
// 更新 map 中对应的数据
map.put(key, x);
} else {
if (cap == cache.size()) {
// 删除链表最后一个数据
Node last = cache.removeLast();
map.remove(last.key);
}
// 直接添加到头部
cache.addFirst(x);
map.put(key, x);
}
}
}
还没有评论,来说两句吧...