发表评论取消回复
相关阅读
相关 深度学习基础-优化算法详解
前言 所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,如果说网络参数初始化(模型迭代的初始点)能够决定模型是否
相关 深度学习基础-优化算法详解
前言 所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,如果说网络参数初始化(模型迭代的初始点)能够决定模型是否
相关 深度学习算法优化系列十九 | 如何使用tensorRT C++ API搭建网络
1. 前言 在[深度学习算法优化系列十八 | TensorRT Mnist数字识别使用示例][_ TensorRT Mnist] 中主要是用TensorRT提供的`NvC
相关 深度学习算法优化系列十二 | 旷视科技 DoReFa-Net
> 摘要 继BNN和XorNet之后,这篇论文提出了DoReFa-Net,它是一种可以使用低位宽参数梯度来训练低位宽权重和激活值的卷积神经网络的方法。特别地,在反向传播传播阶段
相关 深度学习算法优化系列十一 | 折叠Batch Normalization
> 好久不见,优化系列得继续更啊。。。 前言 今天来介绍一个工程上的常用Trick,即折叠Batch Normalization,也叫作折叠BN。我们知道一般BN是跟在
相关 深度学习算法优化系列九 | NIPS 2015 BinaryConnect
> 摘要:得益于GPU的快速计算,DNN在大量计算机视觉任务中取得了最先进的结果。但算法要落地就要求其能在低功耗的设备上也可以运行,即DNN的运行速度要更快,并且占用内存更少。
相关 深度学习算法优化系列三 | Google CVPR2018 int8量化算法
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 【深度学习】快照集成等网络训练优化算法系列
【深度学习】快照集成等网络训练优化算法系列 ![在这里插入图片描述][resize_m_lfit_w_962_pic_center] 文章目录 1 什么
相关 深度学习中的优化算法
梯度下降沿着整个训练集的梯度方向下降。可以使用随机梯度下降很大程度地加速,沿着随机挑选的小批量数据的梯度下降。 批量算法和小批量算法 使用小批量的原因 n个
还没有评论,来说两句吧...