PaddlePaddle 深度学习实战(第一部分)

今天药忘吃喽~ 2023-07-02 03:29 162阅读 0赞

PaddlePaddle 深度学习实战(第一部分)

PaddlePaddle 深度学习实战(第二部分)

PaddlePaddle 深度学习实战(第三部分)

PaddlePaddle 深度学习实战(第四部分)

PaddlePaddle 深度学习实战(第五部分)


深度学习框架的作用

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 1


AI术语


激活函数、优化方法、损失函数(成本函数)

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 2

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 3

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 4

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 5

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 6

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 7

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 8

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 9

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 10

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 11

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 12

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 13

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 14

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 15

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 16


二分类、多分类与多标签问题的区别,对应损失函数的选择

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 17

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 18

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 19

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 20

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 21

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 22


二分类、多分类、多标签和多输出问题解析

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 23

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 24

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 25

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 26

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 27

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 28

  1. 创建模型的关键代码
  2. class FashionNet:
  3. @staticmethod
  4. def build_category_branch(inputs, numCategories,
  5. finalAct="softmax", chanDim=-1):
  6. # utilize a lambda layer to convert the 3 channel input to a
  7. # grayscale representation
  8. x = Lambda(lambda c: tf.image.rgb_to_grayscale(c))(inputs)
  9. # CONV => RELU => POOL
  10. x = Conv2D(32, (3, 3), padding="same")(x)
  11. x = Activation("relu")(x)
  12. x = BatchNormalization(axis=chanDim)(x)
  13. x = MaxPooling2D(pool_size=(3, 3))(x)
  14. x = Dropout(0.25)(x)
  15. # Omit some similar code
  16. # define a branch of output layers for the number of different
  17. # clothing categories (i.e., shirts, jeans, dresses, etc.)
  18. x = Flatten()(x)
  19. x = Dense(256)(x)
  20. x = Activation("relu")(x)
  21. x = BatchNormalization()(x)
  22. x = Dropout(0.5)(x)
  23. x = Dense(numCategories)(x)
  24. x = Activation(finalAct, name="category_output")(x)
  25. # return the category prediction sub-network
  26. return x
  27. @staticmethod
  28. def build_color_branch(inputs, numColors, finalAct="softmax",
  29. chanDim=-1):
  30. # CONV => RELU => POOL
  31. x = Conv2D(16, (3, 3), padding="same")(inputs)
  32. x = Activation("relu")(x)
  33. x = BatchNormalization(axis=chanDim)(x)
  34. x = MaxPooling2D(pool_size=(3, 3))(x)
  35. x = Dropout(0.25)(x)
  36. # Omit some similar code
  37. # define a branch of output layers for the number of different
  38. # colors (i.e., red, black, blue, etc.)
  39. x = Flatten()(x)
  40. x = Dense(128)(x)
  41. x = Activation("relu")(x)
  42. x = BatchNormalization()(x)
  43. x = Dropout(0.5)(x)
  44. x = Dense(numColors)(x)
  45. x = Activation(finalAct, name="color_output")(x)
  46. # return the color prediction sub-network
  47. return x
  48. @staticmethod
  49. def build(width, height, numCategories, numColors,
  50. finalAct="softmax"):
  51. # initialize the input shape and channel dimension (this code
  52. # assumes you are using TensorFlow which utilizes channels
  53. # last ordering)
  54. inputShape = (height, width, 3)
  55. chanDim = -1
  56. # construct both the "category" and "color" sub-networks
  57. inputs = Input(shape=inputShape)
  58. categoryBranch = FashionNet.build_category_branch(inputs,
  59. numCategories, finalAct=finalAct, chanDim=chanDim)
  60. colorBranch = FashionNet.build_color_branch(inputs,
  61. numColors, finalAct=finalAct, chanDim=chanDim)
  62. # create the model using our input (the batch of images) and
  63. # two separate outputs -- one for the clothing category
  64. # branch and another for the color branch, respectively
  65. model = Model(
  66. inputs=inputs,
  67. outputs=[categoryBranch, colorBranch],
  68. name="fashionnet")
  69. # return the constructed network architecture
  70. return model

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 29

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 30


高数


" class="reference-link">线性代数基础:向量、矩阵、点乘(内积)、元素乘、转置、权重向量的L1范数、L2范数(L1/L2正则化)watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 31

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 32

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 33

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 34


微积分基础:导数、偏导数、链式法则、梯度

" class="reference-link">watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 35

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 36

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 37

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 38

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 39

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 40

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 41

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 42

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 43

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9henVzYS5ibG9nLmNzZG4ubmV0_size_16_color_FFFFFF_t_70 44

发表评论

表情:
评论列表 (有 0 条评论,162人围观)

还没有评论,来说两句吧...

相关阅读