多线程:如何合理地估算线程池大小?

我就是我 2023-06-14 11:56 85阅读 0赞

如何合理地估算线程池大小

这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:

如何设计线程池大小,使得可以在1s内处理完20个Transaction

计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

再来第二种简单的但不知是否可行的方法(N为CPU总核数):

  • 如果是CPU密集型应用,则线程池大小设置为N+1
  • 如果是IO密集型应用,则线程池大小设置为2N+1

如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

  1. 最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

  1. 最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论:

线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

上一种估算方法也和这个结论相合。

一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

  • 尽量提高短板操作的并行化比率,比如多线程下载技术
  • 增强短板能力,比如用NIO替代IO

第一条可以联系到Amdahl定律(阿姆达尔定律),这条定律定义了串行系统并行化后的加速比计算公式:

  1. 加速比=优化前系统耗时 / 优化后系统耗时

加速比越大,表明系统并行化的优化效果越好。Addahl定律(阿姆达尔定律)还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

  1. Speedup <= 1 / (F + (1-F)/N)

当N足够大时,串行化比率F越小,加速比Speedup越大。

写到这里,我突然冒出一个问题。

是否使用线程池就一定比使用单线程高效呢?

答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

  • 多线程带来线程上下文切换开销,单线程就没有这种开销

当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

  1. package pool_size_calculate;
  2. import java.math.BigDecimal;
  3. import java.math.RoundingMode;
  4. import java.util.Timer;
  5. import java.util.TimerTask;
  6. import java.util.concurrent.BlockingQueue;
  7. /**
  8. * A class that calculates the optimal thread pool boundaries. It takes the
  9. * desired target utilization and the desired work queue memory consumption as
  10. * input and retuns thread count and work queue capacity.
  11. *
  12. * @author Niklas Schlimm
  13. *
  14. */
  15. public abstract class PoolSizeCalculator {
  16. /**
  17. * The sample queue size to calculate the size of a single {@link Runnable}
  18. * element.
  19. */
  20. private final int SAMPLE_QUEUE_SIZE = 1000;
  21. /**
  22. * Accuracy of test run. It must finish within 20ms of the testTime
  23. * otherwise we retry the test. This could be configurable.
  24. */
  25. private final int EPSYLON = 20;
  26. /**
  27. * Control variable for the CPU time investigation.
  28. */
  29. private volatile boolean expired;
  30. /**
  31. * Time (millis) of the test run in the CPU time calculation.
  32. */
  33. private final long testtime = 3000;
  34. /**
  35. * Calculates the boundaries of a thread pool for a given {@link Runnable}.
  36. *
  37. * @param targetUtilization
  38. * the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes) */ protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) { calculateOptimalCapacity(targetQueueSizeBytes); Runnable task = creatTask(); start(task); start(task); // warm up phase long cputime = getCurrentThreadCPUTime(); start(task); // test intervall cputime = getCurrentThreadCPUTime() - cputime; long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization); } private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { long mem = calculateMemoryUsage(); BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal( mem), RoundingMode.HALF_UP); System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes); System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue"); System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): " + queueCapacity); } /** * Brian Goetz' optimal thread count formula, see 'Java Concurrency in * Practice' (chapter 8.2) * * @param cpu * cpu time consumed by considered task * @param wait * wait time of considered task * @param targetUtilization * target utilization of the system */ private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) { BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu); BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() .availableProcessors()); BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) .multiply( new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP))); System.out.println("Number of CPU: " + numberOfCPU); System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu); System.out.println("Wait time (nanos): " + wait); System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount); } /** * Runs the {@link Runnable} over a period defined in {@link #testtime}. * Based on Heinz Kabbutz' ideas * (http://www.javaspecialists.eu/archive/Issue124.html). * * @param task * the runnable under investigation */ public void start(Runnable task) { long start = 0; int runs = 0; do { if (++runs > 5) {
  39. throw new IllegalStateException("Test not accurate");
  40. }
  41. expired = false;
  42. start = System.currentTimeMillis();
  43. Timer timer = new Timer();
  44. timer.schedule(new TimerTask() {
  45. public void run() {
  46. expired = true;
  47. }
  48. }, testtime);
  49. while (!expired) {
  50. task.run();
  51. }
  52. start = System.currentTimeMillis() - start;
  53. timer.cancel();
  54. } while (Math.abs(start - testtime) > EPSYLON);
  55. collectGarbage(3);
  56. }
  57. private void collectGarbage(int times) {
  58. for (int i = 0; i < times; i++) {
  59. System.gc();
  60. try {
  61. Thread.sleep(10);
  62. } catch (InterruptedException e) {
  63. Thread.currentThread().interrupt();
  64. break;
  65. }
  66. }
  67. }
  68. /**
  69. * Calculates the memory usage of a single element in a work queue. Based on
  70. * Heinz Kabbutz' ideas
  71. * (http://www.javaspecialists.eu/archive/Issue029.html).
  72. *
  73. * @return memory usage of a single {@link Runnable} element in the thread
  74. * pools work queue
  75. */
  76. public long calculateMemoryUsage() {
  77. BlockingQueue queue = createWorkQueue();
  78. for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
  79. queue.add(creatTask());
  80. }
  81. long mem0 = Runtime.getRuntime().totalMemory()
  82. - Runtime.getRuntime().freeMemory();
  83. long mem1 = Runtime.getRuntime().totalMemory()
  84. - Runtime.getRuntime().freeMemory();
  85. queue = null;
  86. collectGarbage(15);
  87. mem0 = Runtime.getRuntime().totalMemory()
  88. - Runtime.getRuntime().freeMemory();
  89. queue = createWorkQueue();
  90. for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
  91. queue.add(creatTask());
  92. }
  93. collectGarbage(15);
  94. mem1 = Runtime.getRuntime().totalMemory()
  95. - Runtime.getRuntime().freeMemory();
  96. return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
  97. }
  98. /**
  99. * Create your runnable task here.
  100. *
  101. * @return an instance of your runnable task under investigation
  102. */
  103. protected abstract Runnable creatTask();
  104. /**
  105. * Return an instance of the queue used in the thread pool.
  106. *
  107. * @return queue instance
  108. */
  109. protected abstract BlockingQueue createWorkQueue();
  110. /**
  111. * Calculate current cpu time. Various frameworks may be used here,
  112. * depending on the operating system in use. (e.g.
  113. * http://www.hyperic.com/products/sigar). The more accurate the CPU time
  114. * measurement, the more accurate the results for thread count boundaries.
  115. *
  116. * @return current cpu time of current thread
  117. */
  118. protected abstract long getCurrentThreadCPUTime();
  119. }

然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

  1. package pool_size_calculate;
  2. import java.io.BufferedReader;
  3. import java.io.IOException;
  4. import java.io.InputStreamReader;
  5. import java.lang.management.ManagementFactory;
  6. import java.math.BigDecimal;
  7. import java.net.HttpURLConnection;
  8. import java.net.URL;
  9. import java.util.concurrent.BlockingQueue;
  10. import java.util.concurrent.LinkedBlockingQueue;
  11. public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
  12. @Override
  13. protected Runnable creatTask() {
  14. return new AsyncIOTask();
  15. }
  16. @Override
  17. protected BlockingQueue createWorkQueue() {
  18. return new LinkedBlockingQueue(1000);
  19. }
  20. @Override
  21. protected long getCurrentThreadCPUTime() {
  22. return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
  23. }
  24. public static void main(String[] args) {
  25. PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
  26. poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
  27. }
  28. }
  29. /**
  30. * 自定义的异步IO任务
  31. * @author Will
  32. *
  33. */
  34. class AsyncIOTask implements Runnable {
  35. @Override
  36. public void run() {
  37. HttpURLConnection connection = null;
  38. BufferedReader reader = null;
  39. try {
  40. String getURL = "http://baidu.com";
  41. URL getUrl = new URL(getURL);
  42. connection = (HttpURLConnection) getUrl.openConnection();
  43. connection.connect();
  44. reader = new BufferedReader(new InputStreamReader(
  45. connection.getInputStream()));
  46. String line;
  47. while ((line = reader.readLine()) != null) {
  48. // empty loop
  49. }
  50. }
  51. catch (IOException e) {
  52. } finally {
  53. if(reader != null) {
  54. try {
  55. reader.close();
  56. }
  57. catch(Exception e) {
  58. }
  59. }
  60. connection.disconnect();
  61. }
  62. }
  63. }

得到的输出如下:

  1. Target queue memory usage (bytes): 100000
  2. createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
  3. Formula: 100000 / 40
  4. * Recommended queue capacity (bytes): 2500
  5. Number of CPU: 4
  6. Target utilization: 1
  7. Elapsed time (nanos): 3000000000
  8. Compute time (nanos): 47181000
  9. Wait time (nanos): 2952819000
  10. Formula: 4 * 1 * (1 + 2952819000 / 47181000)
  11. * Optimal thread count: 256

推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:

  1. ThreadPoolExecutor pool =
  2. new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));

发表评论

表情:
评论列表 (有 0 条评论,85人围观)

还没有评论,来说两句吧...

相关阅读

    相关 如何合理设置线大小

    接着上一篇探讨线程池留下的尾巴,如何合理的设置线程池大小。 要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析: 1. 任务的性质:CPU密集型任