机器学习_决策树(信息熵,决策树,决策树优化,剪枝)

桃扇骨 2023-05-29 03:26 2阅读 0赞

发表评论

表情:
评论列表 (有 0 条评论,2人围观)

还没有评论,来说两句吧...

相关阅读

    相关 信息决策

    在预测分析领域,决策树是可应用于回归和分类任务的算法之一 决策树背后的想法是,根据数据集中的特征对当时响应变量的贡献方式,递归地构建一个颠倒的树状结构。 在每次迭代中,将以

    相关 【ML笔记】决策剪枝

    前言 无论是分类树还是回归树,剪枝过程很重要,剪枝处理不当或是没有剪枝操作,决策树模型都是失败的,通过剪枝,可以大大提高模型准确度,避免决策树的过拟合。 C4.5剪枝

    相关 机器学习基础--决策

    决策树是很基础很经典的一个分类方法,基本上很多工业中很使用且常用的算法基础都是决策树,比如boost,GBDT,CART(分类回归树),我们后需会慢慢分析,决策时定义如下:

    相关 机器学习决策 总结

    具体的细节概念就不提了,这篇blog主要是用来总结一下决策树的要点和注意事项,以及应用一些决策树代码的。 一、决策树的优点: • 易于理解和解释。数可以可视化。也就是说