发表评论取消回复
相关阅读
相关 使用Pandas时,数据清洗和缺失值处理问题
在使用Pandas进行数据分析时,确实会遇到数据清洗和缺失值处理的问题。以下是一些处理这些问题的方法: 1. **检查数据**: 使用`head()`或`tail()`
相关 数据清洗之 数据筛选
数据常用筛选方法 在数据中,选择需要的行或者列 基础索引方式,就是直接引用 ioc\[行索引名称或者条件,列索引名称或者标签\] iloc\[行索
相关 数据清洗之 高阶函数处理
高阶函数处理 在dataframe中使用apply方法,调用自定义函数对数据进行处理 函数apply,注意axis 可以使用astype函数对数据进行转
相关 数据清洗之 缺失值处理
缺失值处理 缺失值首先需要根据实际情况定义 可以采取直接删除法 有时候需要使用替换法或者插值法 常用的替换法有均值替换、前向、后向替换和常数替换
相关 数据清洗之 重复值处理
重复值处理 数据清洗一般先从重复值和缺失值开始处理 重复值一般采取删除法来处理 但有些重复值不能删除,例如订单明细数据或交易明细数据等 imp
相关 pandas对缺失值的处理,清洗数据
Pandas对缺失值的处理 isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃、删除缺失值 axis : 删除行还是列,\
相关 Python 数据清洗之缺失数据填充函数 fillna() 及缺失值处理
引入 在实际的项目中,当缺失数据比较多的情况下,可以直接滤除;而当缺失数据比较少时,需要对数据进行填充。 栗子 import numpy as np fr
相关 python之清洗数据
python之清洗数据 背景介绍: 清洗数据: 大概意思就是由于错误的标点符号、大小写字母不一致、断行和拼写错误等问题,零乱的数据(dirtydata),然后我们
相关 Python 数据清洗--处理Nan
参考:[http://blog.sina.com.cn/s/blog\_13050351e0102xfis.html][http_blog.sina.com.cn_s_blog
还没有评论,来说两句吧...